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a b s t r a c t

Temporal simulations are increasingly performed in wind effects analysis of flexible
structures. By comparison with classical techniques such as spectral methods, temporal
simulations provide the advantage of easily combining different kinds of loads, can take
nonlinearities into account and also provide the onlyway to reproduce transient behaviors.
In that context this study deals with the transient response of a two-degrees-of-freedom
streamlined bridge deck section subjected to a single gust. Experimental evidence of the
potentially high level of transient energy amplification due to that kind of extraneous
excitation have been recently demonstrated for an airfoil section and for a streamlined
bridge deck section, below the critical coupled-mode flutter wind speed. The present
study then focuses on the validation of a time-dependent model, based on a simple
formulation of both the motion-dependent and the buffeting forces, for catching that kind
of transient behavior. A parametric study is also made in order to highlight the impact of
the pitch–plunge frequency ratio on the energy amplification below the critical condition.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Wind-induced responses of flexible structures encountered in civil engineering are traditionally studied using frequency
domain approaches. Based on linear formulations of motion-dependent and buffeting loadings, spectral methods are
generally sufficient for catching the critical parameters for the onset of flutter or calculating the variance associated with
the dynamical response to a stationary turbulent wind [1,2].

Meanwhile, time domain analysis of wind effects on structures has been increasingly performed in recent years. By
comparisonwith spectralmethods, temporal simulations provide the advantage of easily combining different kinds of loads,
can take structural and/or aerodynamic nonlinearities into account and also provide the only way to reproduce transient
behaviors. A time domain approach has been successfully used in [3] for the analysis of flutter and buffeting responses of
bridges. Effects of turbulence and aerodynamic nonlinearity have been pointed out in [4]. More recently, Costa et al. [5]
proposed a wind–bridge interaction study using a time domain approach.

In the present paper we focus on a new type of short-term instability that has been recently highlighted in the
field of fluid-structure interactions: the transient growth response to an initial perturbation before coupled-mode flutter.
Theoretically studied in [6], this short-term energy growth can lead to substantial amplitude motion, even in a stable
dynamical system, due to the non-orthogonal modes involved in the system. It is strongly dependent on the initial
conditions.
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Table 1
Structural parameters of the two different bridge deck sections studied.

fz/fα fα (Hz) fz (Hz) kα (Nm/rad) kz (N/m) JO (kg m2) m (kg) ηα (%) ηz (%)

Case A 0.62 7.12 4.43 1.33 519.36 6.64 e−4 0.66 0.3 0.08
Case B 0.44 8.00 3.56 1.67 309.16 6.61 e−4 0.62 0.24 0.07

Experimental evidence of transient growth of the energy before coupled-mode flutter has been recently demonstrated
for an airfoil section in [7] and a streamlined bridge deck section [8,9] subjected to mechanical or gust perturbation. Those
results have shown that short-term energy amplification of the initial energy can reach a factor of more than 5 and can even
trigger flutter instability in the case of nonlinear structures [10].

In that context, the present study deals with the transient response of a two-degrees-of-freedom bridge deck section
subjected to a single gust. A rigid bridge deck section is flexibly mounted in heave and pitch in a steady air flow. The velocity
is maintained under the critical condition, i.e. below the coupled-mode flutter critical wind speed. A superimposed single
gust produces an initial excitation. The experimental setup and parameters are first detailed. Then a time-dependentmodel,
based on a simple formulation of both the motion-dependent and the buffeting forces is presented. Computed results are
compared with the experimental results. Finally, a numerical parametric study is done in order to highlight the impact of
the pitch–plunge frequency ratio on the energy amplification below the critical flutter wind speed.

2. Transient wind tunnel tests

2.1. The experimental setup and identification of parameters

The main points of the experimental setup are recalled here. Further details concerning the experimental procedure can
be found in previous work [8,9]. The bridge deck section is flexibly mounted in heave and pitch in a closed wind tunnel
with the setup shown in Fig. 1. The two degrees of freedom z(t) and α(t) are measured using laser displacement sensors
connected to an acquisition system.

The elastic center of the deck section model is located at its gravity center, i.e. the mid-chord. The equations of motion
for this structurally non-coupled two-degrees-of-freedom system can then be expressed as follows [11]:

mz̈ + 2mηzωz ż + kzz = Fz,
JOα̈ + 2JOηαωαα̇ + kαα = MO.

(1)

Assuming that the structural damping is small, the eigenvalues can be written in the form

λα = ω2
α = (2π fα)2 = kα/JO; λz = ω2

z = (2π fz)2 = kz/m. (2)

Structural parameters are identified for each degree of freedom under zero wind velocity. Both the natural frequencies fz
and fα are obtained by spectral analysis. A static weight calibration technique is used to assess the stiffnesses kz and kα . The
inertia JO and massm are then deduced, using

m = kz/λz; JO = kα/λα. (3)

Pure structural damping values ηz and ηα are determined using a standard decrement technique in free-decay tests under
the zero-wind condition.

In the present study two different cases characterized by two different frequency ratios fz/fα between the heaving and
pitching motions are tested. The structural parameters are summarized in Table 1.

The gust is produced by a flap mounted upstream from the test section. It is pre-tensioned with a spring and suddenly
released. A typical time history of the perturbation of the flow velocity is plotted in Fig. 2, where Ū is the mean velocity, u(t)
and w(t) being the longitudinal and vertical perturbations respectively. The flap generates a transient short impulse in the
wind velocity, leading to a unique peak in the longitudinal component u, and two opposite peaks in the vertical component
w. The time duration of this perturbation is about 0.05 s, which is three times below the typical period of the system.

2.2. Transient results

Because of the aerodynamic loading, a two-degrees-of-freedombridge deck section can experience coupled-mode flutter
instability above a critical velocity Uc . For both Case A and Case B the critical wind speed has been experimentallymeasured,
at respectively 16.1 and 21.3 m/s. The responses of both the section model subjected to mechanical excitation (a sudden
release of an initial pitch angle) or gust excitation (produced by the upwind flap) are then studied for different mean
velocities below the critical condition.

For each test, the mechanical energy of the system, defined as the sum of the kinetic energy and the potential energy, is
computed from the measurements of z and α such that

E(t) =
1
2
mż2(t) +

1
2
JOα̇2(t) +

1
2
kzz2(t) +

1
2
kαα2(t). (4)
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Fig. 1. Bridge deck cross section and experimental setup schematics, with dimensions in mm.
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Fig. 2. Sample of upstream velocity perturbation measured with a 2D hot wires probe.
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Fig. 3. Typical transient response of the deck to a gust excitation, Ū/Uc = 0.91; Case A.

A typical result of the transient response is given in Fig. 3 for the Case A subjected to gust excitation. Before the critical
condition, the dynamical response is characterized by initial amplification of energy followed by a monotonic decay due
to the asymptotic stability of the system. In Fig. 3, the mechanical energy is normalized using E0, the initial energy of the
system. For initial mechanical excitation, E0 is simply computed as the potential energy that is produced by the imposed
initial pitch angle. For gust excitation, the initial energy E0 transmitted to the system can be measured at the distinct local
peak on the total energy response occurring before the transient growth amplification due to the dynamics of the system.
This gust signature which can be viewed as the gust energy that is immediately transmitted to the deck is clearly noticeable
in Fig. 3 at a time close to 2.9 s. One can also notice that this local peak occurs when the deck reaches approximately the
first minimum in the plunge, while it reaches approximately themaximum velocity in the pitch. Experimental values of this
initial energy E0 are reported in Fig. 4 for both Case A and Case B and various wind velocities. These results show that the
evolution of E0 overlaps in the common velocity region between Case A and Case B, indicating that this reference energy of
the gust impulse is independent of the structure. More details about the experimental procedure for the evaluation of E0
can be found in [9].
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Fig. 4. Initial energy transmitted by the gust versus velocity. Case A: ⃝; Case B: N.

3. Numerical simulations with time-dependent models

3.1. Time-dependent models

Assuming the validity of linear superposition, the time-dependent model is expressed as the sum of motion-dependent
(m) and buffeting (b) loads:

Fz(t) = Fm
z (t) + F b

z (t) (5)

MO(t) = Mm
O (t) + Mb

O(t). (6)
The motion-dependent sectional forces, per unit span, can be expressed as

Fm
z (t) =

1
2
ρBŪ2


H1

ż(t)

U
+ H2

Bα̇(t)

U
+ H3α(t) + H4

z(t)
B


(7)

Mm
O (t) =

1
2
ρB2Ū2


A1

ż(t)

U
+ A2

Bα̇(t)

U
+ A3α(t) + A4

z(t)
B


. (8)

This motion-dependent linear formulation, originally proposed in [12] for a bridge deck undergoing small amplitude
harmonic motions, introduces B, the deck section length, ρ, the air density, U , the mean velocity, and flutter derivative
coefficients Hi and Ai, which depend on the reduced angular frequency K = 2π fB/Ū .

The flutter derivatives are written using the unsteady airfoil theory [11] adapted to the case of a bridge deck which has
its rotation center and its gravity center both located at mid-chord [13]:

H1 = −C ′

zF , H2 = C ′

z


F
4

+
G
K


+

C ′
z

4
, H3 = C ′

z


F −

KG
4


, H4 = C ′

z


KG +

K 2

4


. (9)

A1 = −C ′

MF , A2 = C ′

M


F
4

+
G
K


−

C ′
z

16
, A3 = C ′

M


F −

KG
4


+ C ′

z
K 2

128
, A4 = −C ′

MKG. (10)

F and G which also depend on K are respectively the real and imaginary parts of Theodorsen’s function [14]. Those
expressions also introduce the static lift slope C ′

z and pitchingmoment slope C ′

M of the deck section at small angles of attack.
Both have been experimentally identified in wind tunnels in the appropriate Reynolds number range. With C ′

z ≈ 5.65 and
C ′

M ≈ 1.8 the aerodynamic center of the deck section is found to be at 32% of the chord.
A transient formulation based on Küssner’s function is used for the buffeting terms [11]:

F b
z (t) =

1
2
ρBŪ2C ′

zΨ (τ ) (11)

Mb
O(t) =

1
2
ρB2Ū2C ′

MΨ (τ ) (12)

where the transient function Ψ of the non-dimensional time τ = 2 Ūt/B is calculated using Duhamel’s integral such that

Ψ (τ ) = ϕ(0)
w (τ)

Ū
+

 τ

0

w (σ)

Ū
ϕ′ (τ − σ) dσ (13)

ϕ (τ) = 1 − 0.5 exp (−0.13τ) − 0.5 exp (−τ) . (14)
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Fig. 5. Evolution of frequencies versus wind velocity. Case B, Uc = 21.5 m/s.

The gust vertical component w(t) is fitted from the experiments with two Gaussian distribution functions, with wmin, wmax
and the time scale of the gust as parameters. Küssner’s function ϕ is approximated with the expression of Jones [11] for
an elliptic airfoil. In this model the effect of the longitudinal component of the gust u(t) is neglected. Indeed it induces an
additional term proportional to the mean lift coefficient (or pitching moment) at zero angle of attack, which is relatively
small.

In the next section, computed solutions will be compared to experimental results using two alternative versions of the
time-dependent formulation of the motion-dependent forces. In the first one, named TDM-1, the full model expressed in
Eqs. (7)–(8) will be used. The second one is a simplified version, named TDM-2, which neglects aerodynamic damping:
coefficients H1,H2, A1 and A2 are then set to zero.

Temporal simulations of the problem are performed with a Newmark algorithm which has no numerical damping that
could corrupt the solution. Computed time histories of z andα are then processed for calculating the totalmechanical energy
following Eq. (4) as in the experimental procedure.

3.2. Results and comparison with experiments

Due to the aerodynamic forces, the frequency of both the modes of the systemmight be dependent on the wind velocity.
For a bridge deck section characterized by an aerodynamic center located among the elastic centers and a frequency ratio
fz/fα less than 1, a coupled-mode flutter involving a frequencymerging can occur. The frequency evolution of the twomodes
versus the wind velocity has been experimentally measured using Fourier analysis of the heaving and pitching response of
the system undergoing free-decay tests. Results obtained for Case B are compared in Fig. 5 with computations using full
(TDM-1) and no-damping (TDM-2) time-dependent formulations of the motion-dependent forces.

At low velocities, both models give a good evolution of the system dynamics with a decrease of the pitching frequency,
while the heaving one remains almost constant. However when the velocity approaches the critical flutter velocity, the
model neglecting the aerodynamic damping fails to predict the sudden merging of frequencies due to a sharp increase of
the heaving mode. On the other hand, the full aeroelastic model TDM-1 fits the experimental results very well and predicts
a critical velocity in accordance with the experiments. It is well known that damping terms can exert a substantial effect on
the long-term stability of a dynamical system. In that context those results clearly demonstrate that, for the prediction of
the onset of coupled-mode flutter, a full model of the aeroelastic effects is indispensable.

Using the two motion-dependent models alternatively, computed responses to initial mechanical excitation are now
compared against the experiments. The test procedure used is as follows: for a wind velocity under the critical condition
a negative pitch angle α0 = −2.2° is imposed and the deck is suddenly released. Experimental and computed maximum
energy amplifications are plotted in Fig. 6 versus the wind velocity ratio U/Uc . The model that catches the dynamics of this
short-time instability is now TDM-2, which neglects aerodynamic damping. Indeed the full TDM-1model underpredicts the
energy amplification while the TDM-2 model fits very well with the experiments.

Motion-dependent models are now used to predict the transient behavior due to a single gust excitation, buffeting loads
induced by the gust being introduced in our time-dependent formulation using Eqs. (11)–(14). Examples of the timehistories
of the energy, pitch angle and heaving position are shown in Fig. 7. One can clearly observe that the full model TDM-1 still
fails to reproduce the transient dynamics of the system. Looking at the long-time dynamical response of the system one can
notice that this full aeroelastic model follows the energy profile but overdamped it, as for the response in both the heaving
and pitching motions. This demonstrates that the aerodynamic damping terms based on Theodorsen’s airfoil formulation
are overestimated. Among the four aerodynamic damping terms, the pure terms H1 and A2 are those which most strongly
affect the damping in heave and pitch. They can be used to calculate added aerodynamic damping coefficients that can be
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Fig. 6. Maximum energy amplification versus velocity ratio. Mechanical excitation α0 = −2.2°. Case A: left; Case B: right.

Fig. 7. Time evolution of the energy, angular displacement and vertical displacement. Excitation by gust, Ū/Uc = 0.96; Case B.

compared to the pure structural damping of the system using the following expressions:

ηae
z =

1
4mωz

ρUBH1 ηae
α =

1
4JOωα

ρUB3A2. (15)

Using the flutter derivative formulation expressed in Eqs. (9) and (10) one finds, close to the critical velocity, ηae
z ≈ 2.5% and

ηae
α ≈ 10%. Those values, forty times higher that the pure structural damping coefficients ηz and ηα , explain the strong effect

of the aerodynamic damping terms, between the short-term and long-term behaviors. But while an inaccurate evaluation
of those aerodynamic damping coefficients seems to have an insignificant effect on the frequency evolution of the system,
as with TDM-1, this is not the case for the transient growth behavior. Indeed, as shown in Fig. 7, the early-time dynamics
due to the transient growth of the energy is well simulated by the simple model TDM-2, leading to a correct evaluation of
the maximum energy amplification, while TDM-1 overdamps the response.

These results demonstrate that the motion-induced flow mechanisms generating aerodynamic damping are either not
effective or have an insignificant effect on the transient regime. On the other hand the TDM-2 model overestimates the
long-time dynamical response. In that context and in order to accurately predict the long-time dynamics of the system, a
better evaluation of the flow-induced damping terms seems then necessary. A bridge deck section, even streamlined, has
a negative mean lift force which is induced by a flow which is indeed different from the one around a zero-lift thin airfoil
which is used in Theodorsen theory.

In the present paperwe aremainly focused on the transient behavior of the system, seeking the simplestmodel capable of
reproducing the physics. The efficiency of the TDM-2 model for predicting the short-time amplification due to the transient
growth of the energy is confirmed in Fig. 8, which presents the experimental and computedmaximum energy amplification
versus wind velocity ratio for Case A and Case B.
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Fig. 8. Maximum energy amplification versus velocity ratio; excitation by gust. Case A: left; Case B: right.

Fig. 9. Effect of the frequency ratio on the maximum energy amplification versus velocity ratio.

Fig. 10. Influence of the frequency ratio on the maximum energy amplification at critical velocity.

3.3. A numerical study of the impact of the frequency ratio

In this section a short parametric study is performed to highlight the impact of the frequency ratio between heaving and
pitching modes fz/fα . With Case B as a reference, three other ratios have been built, changing the structural stiffness and
thus the heaving natural frequency only. For all those frequency ratios the coupled-mode flutter velocity is first computed
using the full motion-dependent model (TDM-1) validated in Section 3.2. The numerical model TDM-2, which provides the
best results in the transient regime, is then used to study the transient response to a single gust excitation.

The maximum energy amplification versus velocity ratio is given in Fig. 9 for fz/fα = 0.33, 0.44 (Case B), 0.62 (≈ Case
A) and 0.75. The associated critical velocities are Uc = 22.6, 21.5, 18.65 and 15.6 m/s respectively. It is then interesting to
notice that the lower frequency ratio, which is a priori the most ‘‘secure’’ one in terms of coupled-mode flutter sensitivity,
leads to the highest amplification of energy. This trend is shown more clearly in Fig. 10 where the maximum energy
amplification just below the critical velocity, denoted as (Emax/E0)c , is plotted versus the frequency ratio. On the other hand
one cannot ignore the fact that the critical velocity decreases with the frequency ratio and, as reported in Fig. 4, the initial
energy E0 transmitted by the gust also increases with the velocity. In that context, as seen in Fig. 11, whatever the frequency
ratio, the maximum energy which is reached during the transient response remains almost the same for a given velocity Ū .
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Fig. 11. Effect of the frequency ratio on the maximum energy versus the velocity.

4. Conclusions

Wind tunnel experiments have shown that a two-degrees-of-freedom bridge deck section subjected to a single gust can
exhibit transient growth of energy before the coupled-mode flutter condition. Time-dependent models based on classical
formulations of both the motion-dependent and the buffeting forces have been tried to reproduce this transient behavior.
The buffeting term, expressed in terms of a convolution integral using a Küssner function based indicial function has been
successfully used to compute the gust excitation.

For transient response analysis, numerical results were found to be in good agreement with the experiments using a
motion-dependent formulation of the aerodynamic forces neglecting the aerodynamic damping terms. On the other hand,
a full aeroelastic model remains indispensable for correctly evaluating the coupled-mode flutter critical velocity.

A short numerical parametric study has been made in order to highlight the impact of the pitch–plunge frequency ratio
on the energy amplification below the critical flutter wind speed. Although the lower frequency ratio leads to the highest
amplification of energy, before the critical conditions, the maximum energy which is reached during the transient response
was found to remain quasi-constant for a given mean velocity Ū .
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