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An experimental and numerical study of the aeroelastic behaviour of elongated rectangular
and square cylinders is presented. The main results are for a rectangular section with an aspect
ratio of 2. The experiments were performed with a flexible cylinder clamped at both ends. This
configuration leads to unusual lock-in of the vortex shedding with different bending modes,
although the final steady oscillations occur in the fundamental mode. The galloping regime is
also investigated, and the effect of free-stream turbulence intensity. Critical velocities
are detected which do not correspond to calculations using the quasi-steady theory. A
simple modelling of galloping is proposed to better fit the experiments, but it is shown
that some of the configurations, in turbulent flow, are probably interacting with the
vortex shedding and make the modelling inefficient. Numerical simulations on a 2-D
rectangular section are presented and the resulting wall pressure distributions are analysed
using the proper orthogonal decomposition technique. Indicators are proposed in order
to link the proper functions with their contribution to the aerodynamic force components, and
then a classification of the proper shapes of the decomposition is done. It is shown by
comparison between the static case and forced oscillations, in the galloping range,
that secondary vortices inside the shear layer become symmetrical and their effect on the
forces is cancelled. # 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

1.1. Position of the study

We consider the oscillations of some elongated cylinders submitted to an air cross-flow.
The tested sections of the cylinder are square (c/e=1) and rectangular with an aspect ratio
c/e=2, as shown in Fig. 1. In this paper, we will try to describe the aeroelastic behaviour
of these sections, mainly the rectangular one. The methods of investigation are 3-D
experiments using a long flexible cylinder free to vibrate in a wind tunnel, and 2-D
numerical simulations of which the results are analysed using proper orthogonal
decompositions. Partial versions of this research work were presented in H!eemon & Santi
(2000) and H!eemon et al. (2001). The objective is to obtain a deeper physical understanding
of the phenomena in relation to problems of wind-excited structures such as bridge decks
and pylons, towers, chimneys, and so on.
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Figure 1. Cross-sectional view, showing source of the geometrical parameters.
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Due to the size of the wind tunnel, the flow velocity and the structural characteristics of
the model, the Reynolds number of this study, based on the chord length c, is in the range
of 5000–104. This regime is much lower than in the case of practical problems; however, it
is reasonably asserted that the physics is qualitatively the same, and only the values of
some coefficients are subject to Reynolds number effects. Otherwise, the sharp edges of the
bodies studied are generally considered as a justification to the lack of scale effects,
although one must be aware that some exceptions can occur.
The paper is organised as follows. Following a review of relevant work, a description of

the experimental and numerical tools is given. In particular, a method of analysis by
proper orthogonal decomposition is introduced for which new indicators are proposed.
The results are presented in Section 3, where an unusual vortex excitation observed during
experiments is described. These results are then analysed and discussed in Section 4, where
a model of the time-delayed force of galloping is also proposed and compared with
experiments.

1.2. Overview of the problem

Many authors have already written on the behaviour of rectangular sections subjected
to cross-flow. Some of the studies are restricted to rigid fixed sections, but the major part is
devoted to dynamic problems.
Indeed, the flow can produce transverse vibrations generated by vortex shedding,

denoted as vortex-induced vibrations (VIV), and by galloping which is a movement-
induced vibration (MIV) type of excitation (Naudascher & Rockwell 1994). The behaviour
of the system is modified by the oncoming mean flow velocity V, the angle of attack a and
the turbulence characteristics.
It is now well known that alternate vortex shedding produces a strong fluctuating lift

force within a narrow frequency band given by the so-called Strouhal number, St. If the
structure is flexible enough and has some eigenfrequencies close to that of the shedding,
then a resonance effect is possible and large vibrations can occur. In that case, the lock-in
phenomenon appears and represents a complex behaviour where the vibration of the beam
has a strong influence on the shedding, as in the ‘‘chicken and egg’’ problem.
On the other hand, galloping oscillations were first explained by Den Hartog (1934),

who introduced the criterion for the stability of cross-wind oscillations, using the quasi-
steady assumption and a linearised approach:

C0
z ¼

@CD

@a
� CL

� �
sin aþ

@CL

@a
þ CD

� �
cos a50; ð1Þ

where the aerodynamic force coefficients are CD and CL with the notations shown in
Fig. 1. For small angles of attack, this condition is closely related to the lift slope, a
negative value producing a potentially unstable situation, and can be influenced by the
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Figure 2. Mean flow around a rectangular section: (a) fully separated; (b) reattached.
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upstream flow. Due to the linear approximation, the Den Hartog criterion is able to detect
an unstable situation, but it is unable to describe a limit cycle when it occurs. Later, a
nonlinear galloping theory was proposed by Novak (Novak 1969, 1972; Novak & Tanaka
1974) for different kinds of section, including the square and short rectangles.
Considering the rectangular cross-sections, it is now admitted that the morphology of

the flow around the body is responsible for galloping oscillations (Naudascher & Rockwell
1994; Matsumoto et al. 1998). Indeed, the situation of a fully separated flow, as presented
in Fig. 2(a), will generate a negative lift slope and the possibility of galloping oscillations.
When the flow reattaches on the lateral sides, as in Fig. 2(b), the lift slope becomes
generally positive and galloping does not occur. Thus, when the aspect ratio c/e is large
enough, the flow always reattaches and these section shapes are stable from the point of
view of galloping.
In the case of c/e=2, which is the lower possible value of stable sections, upstream

turbulence may influence the reattachment as shown by the lift curves in Fig. 3, mainly
from Novak (1972). Therefore, this ratio can be considered as critical, because it is able to
present all the possible situations: excitation by alternate vortex shedding, galloping, and
also stability for these two phenomena, depending on the upstream conditions. Another
point is the possibility of coupling between the two phenomena: for example, if the
structural conditions are favourable, vortex excitation can trigger galloping oscillations.
The usual methods of investigation generally use the flutter derivatives introduced by
Scanlan, as in Simiu & Scanlan (1986) for example, which allow the detection of
aeroelastic instabilities but do not really explain its mechanism physically. In the case of
galloping, the so-called H�

1 coefficient would describe the risk of instability for a given
range of reduced velocities, but its explanation should remain in the context of the
modelling, and is notably limited to linear behaviour.

1.3. A Review of PreviousWork

In the case of a fixed cylinder, Norberg (1993) published some static measurements in
smooth flow for small Reynolds numbers, similar to those of this study. Useful results are
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Figure 3. Effect of free-stream turbulence on the lift force coefficient versus angle of attack for the rectangular
section from Novak (1972) and Deniz & Staubli (1997): }, smooth; r, I=5%; .AA, I=11%; *, smooth (Deniz &

Staubli 1997).
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the Strouhal numbers and the static force coefficients versus the angle of attack for
aspect ratios between 1 and 3. Also an interesting numerical approach was given
in Davis & More (1982) for cylinders with a cross-sectional shape close to that of a
square, but with smaller Reynolds numbers:52 800. The effect of the aspect ratio was also
studied numerically (Okajima 1988) for low Reynolds numbers, 150–800. One can
also find some general results in the review by Naudasher & Rockwell (1994) including the
dynamic cases.
In the dynamic range, Nakamura & Nakashima (1986) presented many results on

rectangular sections with an aspect ratio of 2 and larger. They focused their investigation
on the impinging shear layer instability, which was found to be responsible for
vortex excitation for large aspect ratios (>2). More recently, Deniz & Staubli (1997)
studied the forced oscillations of a similar rectangular cylinder at intermediate Reynolds
numbers, 64 000–160 000. They reviewed the different morphologies of the vortex
shedding, which are reported in Fig. 4. They also presented some measurements of the
phase angle between force and displacement and particularly, they detected an abrupt
change of the phase angle between force and displacement in the lock-in range. This
phenomenon was also reported for other cross-sectional shapes (Bearman & Obasaju
1982; Ongoren & Rockwell 1988).
More recently, Van Oudheusden (2000) studied the rotational galloping of a rigid

cylinder having a rectangular section with an aspect ratio of 1	6. The experimental set-up
allowed the cylinder to oscillate with a movement close to that of a pendulum, i.e., a
rotational oscillation. One of the conclusions is a disagreement between quasi-steady
theory and experiments in the estimation of the aerodynamic damping, which was found
to be the main parameter governing galloping instabilities.
Another important point is the influence of the upstream turbulence especially to make

the results more relevant to practical situations. A number of papers have been published
on this. The pioneering work of Gartshore (1973) was the first to report on the effect of
turbulence on galloping of rectangular cylinders. This effect was also studied in Novak &
Tanaka (1974). Some of the other work is devoted to larger shape ratios (Li & Melbourne
1995; Matsumoto 2000) or to smaller ones (Nakamura & Ohya 1983, 1984; Saathoff &
Melbourne 1999). For large shape ratios, it was shown (Haan et al. 1998) that the flow
reattaches earlier when the intensity of turbulence is increased.
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Figure 4. Morphology of the vortex shedding for different aspect ratios: (a) leading-edge vortices (LEV) when
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The work presented in Matsumoto et al. (1998) is devoted to the study of large
variations of the angle of attack a of rigid and flexible (clamped–free) rectangular models,
between 0 and 908 in steps of 158. However, the range of small values of the angle of
attack, 5108, shows many different kinds of behaviour, and this region should be
investigated more accurately.
Most of the dynamic studies are related to a pure lock-in phenomenon or to galloping of

a rigid cylinder which can move perpendicularly to the main flow. The galloping theory
proposed by Novak (1969) includes the effect of the vibration mode shape, using a
nonlinear quasi-steady approach, but the experiments were also conducted for a
cantilevered cylinder. As far as we know, and apart from the studies of Matsumoto and
Novak both of whom used a cantilevered cylinder, the effect of real bending modes of a
clamped–clamped cylinder has not really been studied. Such a cylinder has many bending
modes that can interact with the flow, a mechanism that is not reported in the existing
literature.
Thus, the experimental part of the present paper is devoted to the study of the behaviour

of clamped–clamped cylinders, mainly for a rectangular section. We chose an aspect ratio
of c/e=2, because turbulence intensity is an important parameter with regard to galloping
by varying the flow configuration from fully separated [as in Fig. 2(a)] to reattached
[Figure 2(b)].
In the numerical simulations of this study, the Reynolds number range is that of the

experiments, and it is higher than in the other numerical studies mentioned above.
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Moreover, the differences between fixed and oscillating cylinders are not well documented,
especially the wall pressure distributions, although the analysis of these data should lead to
a better understanding of the aeroelastic phenomena.

2. METHODS OF INVESTIGATION

2.1. ExperimentalTools

2.1.1. The wind tunnel

The tests were carried out in a small Eiffel-type wind tunnel of the Institut
A!eerotechnique. The square test-section has a width D of 0	6m and a length of 2m.
Velocity can vary from 4 to 30m/s, with a measurement accuracy of 1%. A single-channel
hot wire anemometer was mounted for turbulence and wake investigations. Its nonlinear
calibration curve is a fourth-order polynomial, and leads to an accuracy of 5%. Data
acquisition was performed on a PC using a high-speed A/D converter with a sampling
frequency up to 70 kHz.
The turbulence intensity I in the standard configuration is between 0	4 and 0	5% as

shown in Fig. 5. The corresponding longitudinal correlation length (Lx) was calculated
using the Taylor hypothesis on the basis of measurements of the integral time scale.
For the range of velocities 4–17m/s of the present study, Lx is greater than the thickness

of the rectangular cylinder and Lx/e is found to be in the range of 5–8. The corresponding
time scale of the turbulence is smaller than the vibration period of the cylinder (1/27 s, see
the next section), with a ratio between 0	1 and 0	05.
In order to generate turbulence, a square grid was mounted at the beginning of the test-

section. This grid was inspired from Nakamura & Ohya (1983) and Hinze (1975). The
mesh size M=60mm and is made up of 9mm square rods. The lateral size of the test-
section is then 10M, and the longitudinal positions x/M investigated were 10, 13, 16, 19
and 22. The resulting turbulence intensities were respectively 7	5, 6, 5, 4	5 and 4% as is
presented in Fig. 6.
The time macroscale was measured using two methods and measuring systems: (i) with

the autocorrelation function obtained after a long averaging time by a real-time spectrum
analyser, and (ii) the power spectrum at zero frequency. The results were consistent. The
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Figure 5. Turbulence intensity versus wind velocity for the smooth-flow configuration.
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Figure 6. Turbulence intensity versus locations x/M in the test-section for different lateral positions:
*, y/D=0 (middle); &, y/D=�1/6; }, y/D=�1/3.
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Figure 7. (a) Reduced time macro scale; (b) reduced length macroscale versus wind velocity at different
locations x/M in the test-section. *, x/M=9	92; }, x/M=12	92; &, x/M=15	92; 4, x/M=18	92; 5,

x/M=21	92.
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time scale reduced by the first period of vibration of the rectangular model (1/27 s)
is given in Fig. 7. One may note that this time scale is smaller than the period of
vibration.
By using Taylor’s hypothesis of isotropic and homogeneous turbulence, the longitudinal

macroscale Lx is deduced and plotted in Fig. 7. It is reduced by the thickness e of the
rectangular beam model. It should be noticed that the regime seems to be the same with
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and without the grid because Lx/e is found in the range 2–6 in the turbulent case, which
has to be compared to the range 5–8 for the smooth-flow configuration. Hence, the size of
the turbulent eddies is only just greater than the size of the cylinder chord. The study
focuses on the effects of the turbulence intensity and Table 1 presents a synthesis in
physical units of the turbulence characteristics described above.

2.1.2. The vibrating model

The model tested is a beam clamped at both ends (Fig. 8). The dimensions of the
rectangular section are c=10mm, e=5mm and its length is 950mm. It is made of
aluminium alloy and its first bending frequency is 27	3Hz. The square-section cylinder is a
tube with an external section of 8
 8mm and a thickness of 1mm. The first bending mode
has a frequency of 54	5Hz.The clamping system was specially designed in order to obtain
‘‘ideal clamping’’ and to allow a variation of the angle of incidence (� 308). The finite
element computation of the eigenfrequencies gave results in very good agreement with the
measurements, the difference being 51%.
The free vibrations were measured using piezoelectric sensors glued to the beam. These

consisted of 40 mm thick PVDF film glued to the middle upper face of the beam. It was
connected to the acquisition system through a charge amplifier and an analog filter. The
charge amplifier was wired so as to deliver a dynamic signal representing the velocity of the
structure at the location of the sensor; thus the signal voltage was zero when the beam was
not moving. This measuring method was chosen in order to eliminate zero shift problems
due to thermal or pre-stress effects which are critical points when using piezoelectric
techniques. However, the calibration of such a system is more complex since it needs to be
done dynamically. A mass was suspended from the beam and then allowed to fall. The free
Table 1

Characteristics of the turbulence in the wind tunnel at V=10m/s

Position x/M Intensity (%) Time macro-scale (s) Longitudinal
scale Lx (m)

16 (without grid) 0	4 0	0037 0	037
10 7	5 0	0022 0	022
13 6	0 0	0022 0	022
16 5	0 0	0022 0	022
19 4	5 0	0022 0	022
22 4	0 0	0022 0	022

Figure 8. Principle of the wind tunnel tests.
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Figure 9. Dynamic calibration results: experimental and simulation (dotted line) curves.
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damped vibrations were picked-up by the piezoelectric sensor. The reference solution was
given by a finite element computation using a Timoshenko beam model. Fig. 9 gives an
example of calibration results after introducing the structural damping and the calibration
coefficient of the piezoelectric sensor. The global uncertainty on the amplitudes measured
by the piezoelectric sensor was estimated to be of the order of 5%.
It should be noted that the system measures the response of more than one eigenmode,

whereas the numerical solution is based on the first mode only. This is due to the fact that
the sensor has a nonnegligible spanwise size, which is not the case for the reference signal
given for a node of the finite element discretisation. There is also a well-identified
perturbation at 50Hz.
Measured structural damping is 0	24% of the critical damping for the rectangular

section (0	85% for the square) and leads to a Scruton number of 22	6 (18	4 for the square).
It was also noted that the damping was nonlinear for large amplitudes, as in a Van Der Pol
oscillator. This is due to the mechanical system of insulation which absorbs the vibrational
energy when it becomes high. After different calibration tests with different mass loads, it
was found that a cubic term fits the experimental data well, using a nonlinear damping
coefficient Z1 as in equation (2):

m .zzþ 2 Zþ Z1 ’zz
2

� �
om ’zzþmo2 z ¼ 0; ð2Þ

where m, Z and o are the mass per unit length, the reduced damping and the angular
frequency of the movement.
In this paper, the reference length is normally taken as the thickness e of the beam (5 or

8mm). However, the Reynolds number of the tests is as usual based on the chord length c,
and is in the range (5000–10000).
In what follows, the vibration results are given for the middle of the beam as the

dimensionless oscillation velocity in the z direction (see Fig. 1) versus the reduced wind
velocity. The reference frequency is the first bending frequency f of the cylinder (27 or
54Hz). The amplitude of the velocity is the root-mean-square value (r.m.s.) of ’zz which, in
practice, represents around 71% of the maximum value. Table 2 summarises clearly the
main characteristics of the two models.



Table 2

Characteristics of the two cylinder models

Section Chord
c (mm)

Thickness
e (mm)

Aspect
ratio c/e

First bending
frequency
(Hz)

Damping
ratio Z (%)

Nonlinear
damping Z1

Scruton
number
Sc

Square 8 8 1 54	5 0	85 3	5 18	4
Rectangular 10 5 2 27	3 0	24 0	8 22	6
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2.2. NumericalTools

2.2.1. Navier–stokes solver

The flow around a slender rectangular cylinder in cross-flow is approximated by a 2-D
flow. As the focus is on low-frequency oscillations, in the first bending mode of the beam, a
2-D model of the vibrating cases is formulated; although 3-D effects are possible, they are
neglected. Indeed, the largest coherent structures involved in the aeroelastic problems are
widely known to have mainly 2-D characteristics: when a cylinder moves normal to the
flow, the spanwise correlation of wall pressures increases, and therefore a 2-D approach is
a good compromise (Tamura et al. 1993).
For the numerical simulations, we consider only a smooth flow at zero angle of attack

(a=0). The physical model is formulated with the full incompressible 2-D Navier–Stokes
equations. One of the aims of the numerical simulations is to provide unsteady wall
pressures around the structure, which will be processed with a proper orthogonal
decomposition (POD) method and analysed in terms of frequencies; therefore, no
turbulence modelling is added. In equations (3) the physical variables, the velocities u and
the pressures p, are dimensionless:

@tuþ u	ru�
1

Re
Duþrp ¼ 0; r	u ¼ 0; ð3Þ

Re is (similar to) the Reynolds number. The solver is based on a Lagrangian–Galerkin
method. A mixed variational formulation of these full equations is implemented, with a
finite element approximation for space discretisation (Girault & Raviart 1986). The
convective problem is treated using a characteristic method, while the Stokes step is
processed by an implicit algorithm (Pironneau 1989). Low-order characteristic methods
are known to be diffusive on a large mesh, but the region of interest (around the structure)
is discretised, so that a first-order derivative approximation with a fractional step
characteristic method can be used.
The computations are carried out on geometry, Reynolds number and oscillation

frequencies respecting the experimental conditions, particularly in the case of galloping.
However, the numerical simulations consider forced oscillations of the structure, normal
to the flow. Since the movement is that of a rigid body, the vibrations of the structure are
simulated by applying the movement on the external boundary conditions. The
computations are then performed in the reference frame of the body, and the grid
acceleration term is taken into account in the equations.
The forced oscillation is a sine function

zðtÞ ¼ zmax sinð2pfrtrÞ; ð4Þ

where the imposed reduced velocity Vr (the inverse of fr) is equal to 110. The
amplitude zmax is chosen to be equal to c=p

ffiffiffi
2

p
, which corresponds to a
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typical experimental value of ffiffiffiffiffi
’zz2

q
=e f ¼ 2 ð5Þ

as in Fig. 16 and assuming that the maximum value is
ffiffiffi
2

p
times the r.m.s. value.

2.2.2. The mesh

Without turbulence modelling, the scales of the simulated phenomena depend strongly on
the mesh. A direct numerical simulation of all the turbulent scales for the studied Reynolds
number, typically 6 000, requires a mesh element area of approximately 2	15
 10�6.
computed by (Re�3/4)2, which cannot reasonably be done.
For the mesh selection, a criterion was used based on the quadratic error of the

unsteady aerodynamic forces. The mesh was refined until this error was 54% of the lift
force. Finally, a grid composed of 28 258 elements and 14 299 nodes was chosen. The
minimal element size is 9
 10�6, and 300 nodes are located on the wall of the structure
(see details in Fig. 10).
Fig. 11 shows the sensitivity of the mesh to the aerodynamic coefficients. We note the

single sine wave of the lift, obtained by resolution on the coarse mesh, which corresponds
to a smaller Reynolds number as in Davis & More (1982).

2.2.3. The proper orthogonal decomposition

The POD is a powerful method for analysing unsteady components in aerodynamics
(Holmes et al. 1996), and for detecting coherent structures. By comparison with the
vorticity visualisations, the POD has the advantage of analysing the physical components
in space and in time. It is then a good method for problems in aeroelasticity (Dowell et al.,
1999).
The essence of the POD technique is that it is a method of decomposition which

uses arbitrary orthogonal functions that have to be determined. It is currently
used for reducing the order of models to solve flow problems, or for the post-processing
of data and analysis, which is the case here. It can be viewed as a more general
method than the Fourier or wavelet analysis, because the base functions are not chosen a
priori. It is also called the principal components analysis by statisticians (Lebart
et al. 1982).
The method is based on the Karhunen–Lo"eeve decomposition of a multivariable signal.

The main idea is to find a set of proper orthogonal functions that capture the maximum of
the energy of the signal with the minimum number of proper functions.
Figure 10. Mesh used in the numerical simulations (detail of the lower right corner of the cylinder).
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In the present case, the POD is applied to the wall pressure distribution P(X,t) around
the structure which can be written as

PðX ; tÞ ¼
X
n

mnðtÞWnðXÞ; ð6Þ

where the proper functions W are the eigenvectors of the two-point correlation matrix Rc
of the pressure distribution. The optimisation problem of the Karhunen–Lo"eeve
decomposition is then reduced to an eigenmode problem:

RcW ¼ lW ; ð7Þ

where the eigenvalues l can be seen as representative of the relative energy levels. The
convergence is theoretically optimal which will be confirmed in practice.
Problem (7) is solved numerically by the subspace method of Bathe and Wilson. The size

of this problem is given by the number of nodes over the cylinder and is 300
 300, as
mentioned previously. The nodes on the wall were uniformly distributed and no correction
as suggested in Jeong et al. (2000) was applied.
For the present application, it is really interesting to estimate the contribution of each

proper function to the component of the aerodynamic forces by using, for the lift
coefficient,

Czn ðtÞ ¼
mnðtÞhWn; nzi

rV2=2
; ð8Þ

where nz are the z components of the normal vectors of the structure, the symbol hi
denoting the space integration over the surface of the cylinder. The principal components
are given by

mn tð Þ ¼ P X ; tð Þ;Wnh i; ð9Þ

when the normalisation procedure of the proper functions is chosen, so that

Wn;Wnh i ¼ 1: ð10Þ

Anyhow, the sum of all the contributions to the force are equal to the total force, which
gives for the lift

Cz tð Þ ¼ P X ;tð Þ; nzh i ¼
X
n

Czn tð Þ: ð11Þ
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Equations (8) and (11) can easily be extended to obtain the drag and pitching coefficients
by projecting onto the x components of the normal vector.
From the classical properties of the eigenmodes (orthogonality and normalisation), it is

easy to show that the mean-square of the principal components is equal to the eigenvalue,

m2n ¼ ln; ð12Þ

with the overbar denoting time integration. Also, the total mean-square of the pressure
distribution is equal to the sum of the eigenvalues, i.e.,X

i

p2i ¼
X
n

ln: ð13Þ

Hence, it is possible to express each eigenvalue with reference to its sum, usually as a
percentage, so as to obtain a good indicator of the efficiency of the decomposition by
making the cumulative sum. However, for the purpose of the present application, it is also
important to define an unbiased quantity which could allow the classification of the proper
functions by reference to the different aerodynamic force components. Indeed, the
eigenvalues are the global indicators of the energy of each proper function with respect to
the total energy in the pressure distribution; however, their decomposition into force
components is not immediately available.
Next, we introduce a projection of the mean-square value of the force component onto

the corresponding eigenvalue:

Czn tð Þ
2 ¼ ln

Wn; nzh i
rV2=2

� �2
: ð14Þ

Indeed, the properties of the eigenvectors and equations (8) and (12) induce the
orthogonality of the family (Czn) for the time integration, i.e.,

Czn tð ÞCzm tð Þ ¼ ln
Wn; nzh i
rV2=2

� �2
dnm; ð15Þ

where dnm is the Kronecker symbol. This leads to

Cz tð Þ
2 ¼

X
n

Czn tð Þ2: ð16Þ

As for the eigenvalues, a new coefficient is introduced as a proportion of the contribution
of each proper function to the mean-square component of the aerodynamic force, which is
defined by

ECzn ¼
Czn tð Þ2

Cz tð Þ
2

ð17Þ

and usually given as a percentage. This coefficient is also defined for the drag force and the
pitching moment within the same procedure.

2.2.4. The mean-value problem

The POD can be performed on data which have a mean component, This is a major
difference to the wavelet method, as notably pointed out in Farge (1992). Moreover, in the
case of aerodynamic quantities, the analysis can be performed on the total component
(static+fluctuating), which is much more interesting for applications in aeroelasticity.

A contrario to some authors using the POD, experience shows that there is no ‘‘true
eigenvector’’ as claimed by Tamura et al. (1999), but there are only some eigenvectors
useful for the physical analysis of the problem. Thus, the choice of including or not the
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mean value in the correlation matrix cannot be made from the result of a rigorous
mathematical demonstration. The only proven result is that the eigenvectors found will be
different in the two cases. Because the purpose of POD is only data analysis, the arguments
for including or not the mean component is decided by the particular application and for a
specific use of the results. For example, the application on domes by Letchford & Sarkar
(2000) leads to interesting physical interpretations with the mean value included in the
pressure signals.
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Figure 12. Proper (POD) functions with (left) and without (right) inclusion of the mean value.
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Moreover, insofar as we are interested here in an aeroelastic problem which contains
nonlinearities in the aerodynamic forces, the exclusion of the mean value would implicitly
assume a linearity of the problem, because the mean level, at which the phenomenon
occurs, would not be taken into account. However, even if the POD is a linear operation, it
does not need and does not assume linearity of the process which is studied. In others
terms, this means that nonlinear phenomena in the original signal will be transferred into
the decomposed signal without modification. Consequently, there are some difficulties in
making comparisons between the two kinds of decomposition when the phenomena are
not at a zero mean value.
In order to illustrate this point, and before presenting all the results in detail, a POD

has been made for the case of the nonvibrating rectangular cylinder with and without
inclusion of the mean value. Fig. 12 presents the comparison between the results
that include or not the mean value for the eight first proper functions around the
rectangular cylinder, with the wind coming from the left. It will be shown in the next
sections that these eight functions are sufficient for the analysis of the aerodynamic forces.
In order to make the comparison easier, the number of modes for the case that excludes
the mean value has been increased by one, since the first mode should represent the mean
component. Only two proper functions do not correspond (3 and 5 with the mean value,
and 3 and 4 without), because they are both strongly related to the drag force which is not
a zero mean-value mechanism. The other functions are similar; therefore all the
PODs presented hereafter will include the mean value, because it is more convenient
for the recombination of the aeroelastic forces which we are interested in. This point
remains, however, under discussion and requires further investigations especially for
non-Gaussian signals.

3. RESULTS

In this section we present the results of the experiments with the square and rectangular
cylinders at different angles of attack as well as the numerical simulations with the
rectangular section at a=0. The experimental study of the effects of the upstream
turbulence was conducted with the rectangular cylinder. The configurations that were
studied are summarised in Table 3, where the differences between VIV and MIV refer to
the corresponding reduced velocity ranges.
The numerical simulations, in smooth flow, were only performed on the

rectangular section at zero angle of attack for the static case and for galloping
(MIV) at Vr=110.
Table 3

Configurations studied

Section Type of
aeroelastic
excitation

Experiments Numerical simulations

Turbulence
intensity

Angle of
attack

Turbulence
intensity

Angle of
attack

Square Static 0	5% 0–308 – –
VIV 0	5% 0–158 – –
MIV 0	5% 0–158 – –

Rectangular Static 0	5–7	5% 0–308 smooth flow 08
VIV (Vr � 60) 0	5% 0–68 – –
MIV 0	5–7	5% 0–68 smooth flow 08
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3.1. Static Case

3.1.1. Rectangular section

The aerodynamic forces (drag, lift and pitching moment) obtained numerically are given
in Fig. 13 versus the reduced time tr (the label Cz(2) will be explained later in Section 4.1)
and in Fig. 14 versus the reduced frequency fr (magnitude of the Fourier transform,
dimensionless quantity such as a force coefficient).
The statistical results are given in Table 4. The mean drag coefficient 0.82 is in good

agreement with the results reported in Norberg (1993) which gives 0	80. Also, Deniz &
Staubli (1997) gives 0	70 but for an experiment at a higher Reynolds number, whose effect
is known to produce a lower drag force due to an earlier reattachment of the shear layers
(Nakamura & Ohya 1983).
Also, the Strouhal number was measured versus the angle of attack with various

intensities of turbulence and the results are given in Fig. 15(a). These measurements were
performed with the cylinder kept fixed. At zero angle of attack, the computed Strouhal
number (0	086), given by the fundamental frequency of the lift coefficient (see Fig. 14),
compares well with the experiments in smooth flow (0	085). These results are also in
agreement with those of many other authors (Norberg 1993; Matsumoto et al., 1998;
Deniz & Stabuli, 1997). It must be pointed out that the reference length used for the
computation of the Strouhal number always remains the thickness of the cylinder, and is
not modified by the angle of attack, as sometimes done by others authors.
For smooth flow at 08, the Strouhal number is due to impinging leading-edge vortices.

The jump at an angle between 4 and 68 is linked to a change in the pure shedding of
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Figure 13. Computed time histories of aerodynamic forces: rectangular section, a=08, smooth flow,
Re=6000, nonvibrating.
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Figure 14. Computed Fourier transforms of aerodynamic forces: rectangular section, a=08, smooth flow,
Re=6000, nonvibrating.

Table 4

Statistical results of the aerodynamic forces. Rectangular section, a=08, smooth flow, Re=6 000,
nonvibrating and galloping cases

Component Mean value Standard deviation

Static case Drag coefficient 0	82 0	056
Lift coefficient 0	 0	60
Pitching moment coefficient �0	014 0	036

Galloping, Vr=110 Drag coefficient 0	84 0	027
Lift coefficient 0	0 0	75
Pitching moment coefficient �0	013 0	042
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alternate vortices on the edges due to the geometrical effect of the angle of attack. The
morphology of these vortices corresponds to one vortex which separates at the leading
edge, and the other at the trailing edge (Deniz & Staubli 1997).
In turbulent cases, the peak in the power spectrum of the velocity was less dominant,

and a longer averaging time was necessary, especially for the small angles of attack,
because the impingement of the leading-edge vortices becomes less periodic with increasing
turbulence. At the angles of 0–48, the shedding is so irregular that it is not really possible
to attach a meaning to the given Strouhal numbers, even if they correspond to a small
peak in the velocity spectra.
Between 4 and 88 in turbulent flows, no significant peak could be detected which means

that no coherent and periodic impinging leading-edge shedding occurred. For incidences
>88, smooth and turbulent flows produce the same results due to the alternate edge vortex
shedding.
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Thus, these measurements confirm that the unsteady reattachment on the lateral sides is
strongly influenced by free-stream turbulence. Unfortunately, there are no measurements
at turbulence intensities between 0	5 and 4%, a range over which the Strouhal number
changes radically. We do not really know whether this change is sudden or progressive.
However, one may expect the turbulence to modify the flow regime (i.e., the morphology
of the vortex shedding) abruptly.

3.1.2. Square section

This section was studied only in the wind tunnel and only in smooth flow. For the static
case, the Strouhal number was measured and is plotted in Fig. 15(b) versus the angle of
attack. The agreement with the results given by Luo et al. (1994) is very good.
The jump between leading-edge vortices and alternate-edge vortices occurs between 11

and 128 as the Reynolds number varies from 9 000 to 5 000. An increase in the
Reynolds number produces an earlier jump that is classically linked to a decrease in the
wake width.

3.2. TheVortex-InducedVibration Experiments

3.2.1. Rectangular section

The rectangular section was found to be sensitive to the alternate vortex-shedding within a
particular mechanism which we decribe in this section. The fundamental data are well
summarised in Table 5 at zero angle of attack. The velocities at lock-in are deduced from
the Strouhal number measured for the static case (St=0.085). The reference frequency
used for the dimensionless parameters, such as the reduced velocity, always remains that
of the first mode.
Concerning the first mode, the velocity at lock-in is very low and cannot be obtained

experimentally in the wind tunnel without instability of the flow due to the very low regime
of the fan. Thus the excitation of this mode was only detected and it was not possible to
make reliable measurements.



Table 5

Bending frequencies and corresponding velocities at lock-in. Rectangular and square sections, a=0,
smooth flow

Model Bending mode Frequency (Hz) Lock-in velocity (m/s) Lock-in reduced velocity

Rectangle First 27	3 1	57 11	5
Second 75	2 4	32 31	7
Third 147	5 8	48 62	0

Square First 54	55 3	43 7	87
Second 150	0 9	45 21	65
Third 294	 18	5 42	5
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Figure 16. Vibrations results of rectangular section in smooth flow: (a) a=08; (b) a=28; (c) a=48.
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The second bending mode was not excited experimentally, although the velocity could
be stabilised around the lock-in. In fact, this mode has the classical shape of a second
bending mode, with one node in the middle and two antisymmetric maxima. Due to this
shape, and because the wind profile along the span is constant, no wind excitation can
occur. In other words, the modal mass of such an eigenmode being zero (G!eeradin & Rixen
1993), its participation in the vibrations should indeed be negligible, which is found
experimentally.
VIV occurred with lock-in for the third mode, at a velocity within the standard range of

the wind tunnel. Lock-in occurred at a reduced velocity of 60, as can be seen in Fig. 16(a),
which is close to the value of 62 given by the theory (Table 5). It must be pointed out that
the computation error of the eigenfrequencies increases with their order, mainly because of
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the effect of the inertia of rotation. Fig. 16(b), present the same kind of results for angles of
attack of 2 and 48.
However, this apparently standard lock-in evolves in a more complex manner, so that,

in the end, the steady vibrations occur in the first mode, although the upstream wind
velocity remains constant, i.e., that of the initial resonance with the third mode.
In fact, the behaviour before reaching steady vibrating conditions due to vortex

shedding is quite complex. Indeed, the vibrations start in the third mode, due to the
coincidence of frequencies; but as the amplitude grows, the movement is transferred onto
the first bending mode, at a lower frequency. Finally, vibrations become well established in
the first mode.
This transient process is difficult to observe and takes about 60 s. Nevertheless, in the

final steady state, the shape of the first bending mode could be well observed
using a stroboscope. Moreover, the Fourier analysis of the signal of the piezo-sensor
actually showed a main frequency equal to that of the first mode, as shown in Fig. 17(a).
This signal has not been filtered so as to be able to evaluate the contribution of harmonics,
which are much smaller than the fundamental mode. Also, the longitudinal velocity in the
wake (given by a hot-wire probe mounted downstream at a distance of two chords, c)
presents a dominant frequency on the first mode of vibration, as can be seen in Fig. 17(b)
(the two signals were acquired simultaneously).
The flow in the wake shows a well-established periodic component that is clearly

linked with the vibration. The shedding of the vortices is triggered by the oscillations
of the cylinder. The flow does not show any tendency to return to the regime of
natural shedding, although the frequencies are really different (i.e., 27Hz as compared
to 147Hz).
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It is obvious that this phenomenon cannot occur with the rigid body considered in other
studies. As far as we know, this may be the reason why it has not been reported before.

3.2.2. Square section

As for the rectangular section, Table 5 shows the possibility of lock-in for the square
section estimated from the Strouhal number measured on a static cylinder (St=0	127). The
vibration results are plotted in Fig. 18 for angles of attack of 0, 5, 10 and 158. At 108, the
galloping instability is dominant and the vortex excitation is not visible although it is
probably present.
The behaviour is very similar to that of the rectangular section, with the excitation of

the third bending mode, at Vr=44 for a=0 and 58, and Vr=39 for a=158. The amplitude
is generally very small because the structural damping of this cylinder is larger; therefore,
the accuracy of the amplitude of each peak is not very good and the analysis of steady
vibrations is not reliable enough. Nevertheless, the behaviour is qualitatively similar to
that of the rectangular cylinder.
Moreover, at 0 and 58 a small excitation peak exists at Vr=22, which seems to be a

resonance of the third bending mode in the direction of the mean flow (all the bending
modes are double because of the square section) coupled with the first harmonic term of
the vortex shedding. This corresponds to twice the Strouhal number. The amplitude is very
small, because here the sensor is not supposed to be sensitive to the displacement in the
streamwise direction. This mechanism has been thoroughly studied by Obasaju et al.
(1990).

3.3. Galloping Case

3.3.1. Rectangular section

The galloping phenomenon occurs at larger reduced velocities than the vortex shedding
excitation. This can be seen in Fig. 16 for the rectangular section in smooth flow at 0, 2
and 48 of angle of attack. At 68, this section is stable in galloping.
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The experimental results for turbulent flows are given in Fig. 19, where it can be seen
that the galloping instability was not detected at 48 for reduced velocities below 150. The
critical velocities at which galloping sets in are summarised in Table 6. It is interesting to
note that the critical velocity first decreases when the turbulence increases and then
increases until stability is reached when the turbulence is further increased.
The numerical simulations were performed in smooth flow with forced oscillations

at Vr=110. The resulting time histories of the forces are given in Fig. 20 and the
statistical values in Table 4. The coupling with the period of the movement is clearly
visible on the aerodynamic coefficients. A kind of organisation of the flow occurs
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Table 6

Critical reduced velocities for galloping. Rectangular section

Turbulence intensity a=08 a=28 a=48 a=68

0	5% 65 65 65 Stable
4% 42 55 Stable Stable
4	5% 42 42 Stable Stable
5% 42 55 Stable Stable
6% 110 120–130 Stable Stable
7	5% Stable Stable Stable Stable
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Re=6000, Vr=110 (galloping).

AEROELASTICITY OF RECTANGULAR CYLINDERS 877
because the time history of the lift becomes close to a simple sinusoid, as shown by the
Fourier transform in Fig. 21.
In the experiments, when comparing the VIV and the MIV regimes, very few differences

are present in terms of the dynamics of the measured signals on the structure, as can be
seen in the spectra in Fig. 22 compared to Fig. 17. Indeed, the structural vibrations are
completely similar, since the wake signal only detects the fundamental vibration of the
beam, without the harmonics which are present in the VIV case. The vortices that are shed
during galloping are clearly triggered by the vibration, whereas the shedding in the VIV
case is naturally present and induces a lock-in.

3.3.2. Square section

This case was investigated less than the rectangular section, and galloping occurred only at
an angle of attack of 108, as can be seen in Fig. 18. For the small angles, 0 and 58,
galloping should have occurred at a higher velocity which cannot be obtained in the wind
tunnel. Indeed, the negative lift slope C0

z at 08 is only �2	05, whereas at 108 it is much
higher, �8	16, which explains why the critical velocity was not reached at 08. The tests on
this cylinder will find their use in the validation of the model proposed in the next section.

4. DISCUSSION AND ANALYSIS

The previous results are used in this section in order to better understand the problem of
galloping vibrations through a more thorough description of the morphology of the
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Figure 23. Proper functions in static (on left) and galloping cases (on right, at Vr=110).
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pressure loads on the cylinder, without and with oscillations. Then, as a second step, we
propose an improvement to the quasi-steady theory that could better fit the experimental
results.

4.1. Analysis with the Proper Functions

In order to analyse the components of the aerodynamic forces, the POD method described
in Section 2.2.3 is applied to the computed results. The idea is to establish links between
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the morphology of the proper functions (plotted in Fig. 23) that have some kind of
universal shapes, and a physical view of the phenomenon.
The distribution of the eight largest eigenvalues is shown in Fig. 24; the other graphs in

this figure show the distributions of the eigenvalue projections onto the force components
[cf. equation (17)]. They give useful information for the interpretation of the proper
functions.
The diagrams of Fig. 24 prove that the changes in the energy distribution of the proper

decomposition are appreciable between the static case and galloping, and they are more
visible for the projections onto the force components. Indeed, the proper functions
themselves are modified; the shape of these functions (cf. Fig. 23) are different, some of
them change in order, some disappear and others are modified or entirely new. So, it is
difficult to compare the two regimes mode for mode.
It must first be noted that the second proper function is preponderant for the lift.

This is verified by comparing the lift contribution of this function with the computed
total lift (cf. Fig. 13 for the static case and Fig. 20 for the galloping case, where the
two curves are superimposed); the contribution of the other modes is negligible.
It is interesting to see here that the POD is a very efficient method for reducing
the order of the data set, because only one function is necessary to recombine the lift
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history, which remains one of the most important mechanical parameters for the
aeroelastic behaviour.
For the drag, the first proper function, which contains the pressure mean value, is of

course preponderant but the fluctuations caused by the contributions of the next six
functions are necessary to obtain a good representation of the unsteady drag coefficient.
We note that function 2 has a negligible contribution to the drag in the static case, which
seems not to be the case in the galloping regime. In fact, one must remember that the
quantities are percentages of the total mean-square value: the standard deviation of the
drag component in the galloping case is almost half that of the static case (cf. Table 4).
Thus, the absolute contribution of the fluctuations of the proper functions is smaller for
the MIV case.
Time histories and corresponding spectra of contributions of each proper function are

presented in Figs. 25 and 26 for the pitching moment. The same analysis could be done for
the lift force; however, due to the location of the secondary vortices on the rear part of the
chord, their effect on the pitching moment is amplified and therefore, this component is
preferred for the analysis.
In the galloping case, the movement globally induces a reorganisation of the

fluctuations of the low-order contributions due to the fact that the secondary vortices,
located inside the shear layer, are made symmetrical instead of alternate, so that their
effect on the global force component is cancelled. Indeed, in the static case, the unsteady
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reattachments on the lateral sides (impinging secondary vortices) and their interactions
with the alternate leading-edge vortex shedding induce large perturbations on the pitching
moment. The frequencies of these perturbations are 1

2
St and its harmonics. The most

energetic phenomenom for the fluctuations of the drag in the static case is located on this
subharmonic frequency.
It is interesting to note that, for galloping, the present configuration leads to the

alternate vortex shedding as being globally the most energetic phenomenon (i.e., the larger
eigenvalues), and not the forced oscillation component. Also, for pitching oscillations
(Amandol"eese 2001), the same behaviour was found for an aspect ratio of 4, while the
larger ratios were characterised by the forced movement as being the most energetic
mechanism.
The analysis of the shapes for the lateral sides is presented in detail in Table 7. In each

case, a simplified shape is reproduced and interpreted. The main frequency of its time
history is noted for the two cases, static and galloping, and the link is made with the
relative magnitude of the force (i.e.,the lift and the pitch for the lateral sides). When many
harmonics appear, the index n is placed besides the frequency concerned, so that the term n
St means that the Strouhal number and its multiples appear.
It must be noted that the impinging, made prominent by the POD, occurs mainly at two

positions along the chord of the cylinder, at e (or c/2) starting from the leading edge, or at
3e/2. In the first case, the phenomenon involved is linked to the leading-edge vortices, at
frequency St, and in the second case to secondary vortices at frequency 1

2
St and possibly its

harmonics.



Table 7

Analysis of the lateral side mode shapes from the POD

Lateral side shape Physical
interpretation

Static case (Vr=0) MIV case (Vr=110)

Mean pressure value 0 Mode 1 0 Mode 1

Antisymmetric stall
Leading-edge
vortex Shedding

St Lift 1
Mode 2

St Lift 1
Mode 2

Antisymmetric
Impinging at e

n St/2 Pitch 3
�Mode 3

St Pitch 1
Mode 3

Antisymmetric
Impinging at 3/2 e

n St/2 Pitch 1
Mode 4

fr+n St Pitch 2
Mode 5

Symmetric
Impinging at 3/2 e

n St/2 Pitch 5
Mode 6

2 St Pitch 7
Mode 4

Antisymmetric
Impinging at e

fr+n St Pitch 5
Mode 5

Symmetric
Impinging at e

fr+2 St Mode 7

Antisymmetric
Impinging at 3/2 e

3
2
St 5

2
St Pitch 8

Mode 8

Antisymmetric
Impinging at e

2 St Pitch 6
Mode 7

Symmetric
Impinging at e

fr+n St Pitch 4
Mode 6
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In the galloping regime, for the lateral sides, the movement at fr appears only for higher
order functions, not below mode 5. Another point is that the subharmonic 1

2
St and its

multiples are not present because of the symmetry of the secondary vortices induced by the
movement, as already noted.

4.2. Galloping Force Model

The objective of this part of the paper is to provide a simplified model of the galloping
phenomenon that could be applied to practical situations, starting from static
measurements on the section concerned. It is well known that quasi-steady theory does
not produce reliable results for the critical velocity, because the aerodynamic damping
expressed in the Den Hartog criterion does not take into account the dynamic part of the
stalled flow.
We start from the equation of motion of a 2-D cylinder vibrating in the z direction

m .zz tð Þ þ 2Zom ’zz tð Þ þmo2 z tð Þ ¼ Fz ’zz t� tð Þð Þ; ð18Þ

where Fz is the aerodynamic force along the z-axis, which depends on the velocity of the
cylinder with a little time lag t, as initially proposed by H!eemon (1999a). In the quasi-
steady theory (QST), this time lag or phase lag is neglected. The aerodynamic force is
written in a classical way as

Fz ’zz t� tð Þð Þ ¼ 1
2r cV2

aCz aað Þ; ð19Þ

where the relative velocity Va and the relative angle of attack aa are due to the movement
of the cylinder, and they are obtained by a velocity triangle which gives

V2
a ¼ V2 þ ’zz2 t� tð Þ � 2V sin a ’zz t� tð Þ; tan aað Þ ¼

V sin a� ’zz t� tð Þ
V cos a

: ð20Þ

The static coefficient Cz is a function of the angle of attack and can be expressed in terms
of CD and CL. Then, a linear analysis, combined with an energy balance starting from
equation (18) allows finding the critical velocity of the flow above which the cylinder will
start its galloping oscillations. We assume that the movement takes the harmonic form

z tð Þ ¼ ZM sinot; ð21Þ

and we can then find the critical velocity using the dimensionless numbers, i.e., the reduced
velocity Vr, the Scruton number Sc and the reduced time lag tr. Hence, one obtains

Vrc

4pSc
þ

c

eAz cos 2ptr=Vrc

� � ¼ 0 ð22Þ

which can be easily solved numerically, knowing Az ¼ 2Cz sinaþ ð@Cz=@aÞ cosa from
static measurements.
The interesting point comes from the time lag that has to be estimated accurately

because it plays a fundamental role in the energy exchanges between the flow and the
structure. As pointed out recently (Deniz & Staubli 1998), unsteady airfoil theory (UAT)
(Fung 1955 ) already takes into account a time lag, since the lift force is expressed using the
complex function of Theodorsen F kð Þ þ iG kð Þ, which depends on the angular reduced
frequency k:

Fz ¼ �wrp
c

2

	 
2
.zz� rV

c

2

	 

C0

zF kð Þ ’zzþ rV2 c

2

	 

C0

zkG kð Þz; ð23Þ
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where w is an added mass coefficient which is generally neglected for such a low speed air-
flow. Thus the time lag is given by

tr ¼
1

k
arctan

�2F kð Þ
G kð Þ

� �
ð24Þ

when the added mass is neglected. However, this theory assumes that the flow is not stalled
and is non viscous, and therefore the time lag estimated by equation (24) gives very small
values for the range of reduced velocities of our study. The UAT results are close to those
obtained with the quasi-steady assumption, and therefore an improvement has to be
found. Indeed, the time lag is a consequence of the viscosity and becomes very large when
the flow is stalled, because it simply translates the fact that the flow is not restored
instantaneously when the structure moves.
For bluff bodies in general, the time lag remains an unknown parameter, but some

information exists for the case of interference galloping between two cylinders in tandem,
where the phase lag triggers the instability. Indeed, some authors such as Blevins (1990)
and the results found in H!eemon (1999b) showed a correlation between the reduced time
lag and the Strouhal number, i.e., the period of the vortex shedding. From another point
of view, some links exist between the time lag and the convection velocity near the body
and the width of the wake. Therefore, the time lag was chosen as one period of the vortex
shedding, so that by definition the reduced time lag is taken equal to the inverse of the
Strouhal number. The explanation for such a correlation remains unclear, but some good
results are obtained by comparison with experiments, as shown below. A thorough
understanding requires further investigation.
The results of calculations are given in Tables 8 and 9 for the rectangular and square

sections, respectively, in smooth flow. The static lift coefficients were taken from Deniz &
Staubli (1997) for the rectangular section in smooth flow and from Luo et al. (1994) for the
square cylinder. The computations were performed with smoothing polynomials for the
force coefficients. The reduced velocities presented are divided by 4p Sc, which produces a
Table 8

Critical velocities for the rectangular section in smooth flow

c/e=2 a=08 a=28 a=48 a=68

C0
z �4	86 �4	51 �3	05 +0	34
St 0	085 0	087 0	120 0	141
Vrc/4p Sc experiments 0	23 0	23 0	23 Stable
Vrc/4p Sc equation (22) 0	233 0	238 0	235 Stable
UAT or QST 0	10 0	11 0	16 Stable

Table 9

Critical velocities for the square section in smooth flow

c/e=1 a=08 a=108

C0
z �2	05 �8	16
St 0	127 0	134
Vrc/4p Sc experiments >0	28 0	15
Vrc/4p Sc equation (22) 0	32 0	16
UAT or QST 0	24 0	06



Table 10

Critical velocities for the rectangular section in turbulent flow at 5% intensity

c/e=2 a=08 a=28 a=48

C0
z �2	43 �0	89 +1	51
St 0	037 0	043 None
Vrc/4p Sc experiments 0	15 0	19 Stable
UAT or QST 0	20 0	56 Stable
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kind of universal reduced velocity, as suggested by Novak (1972). Indeed, his experimental
results for the rectangular section at a=0 are in agreement with the present results. For the
square section at a=0, the critical velocity could not be reached experimentally and the
maximum value explored was 0	28. Indeed, the model gives 0	32, whereas the QST gives
0	24 which should have been observed experimentally. Thus, the proposed time-delayed
calculation of the critical velocity is in very good agreement with the experiments in
smooth flow and improves significantly the quasi-steady theory, assuming that the
Strouhal number of the section is known.
However, when vortex shedding does not occur, or when it is not well established, the

model cannot give reliable results. Table 10 presents the results for the rectangular section
with 5% turbulence intensity. The static lift coefficient used is the one given in Fig. 3. The
QST calculation does not give good results and predicts much higher critical velocities,
whereas the experiments give the opposite . The proposed model with time delay based on
the period of vortex shedding also does not give good results, because the Strouhal number
under such turbulent conditions is not the same as in smooth flow. Moreover, the Strouhal
number is very difficult to measure, because the signal is very noisy and the vortex
shedding not well established, as was already mentioned.
Anyhow, if formula (22) is used with the critical velocity given by the experiments, it is

impossible to find an equivalent reduced time lag which could make the model work.
Indeed, in this case the ratio between the time lag and the period of the movement

t=T ¼ fr=St ð25Þ

gives 0	64 in turbulent flow, whereas the same ratio is only 0	18 in smooth flow. Thus,
according to the proposed model, when the force is delayed too long in comparison with
the period of the movement, there is no possibility for the fluid to transfer energy to the
structure, which is not in agreement with the experiments. Therefore, galloping oscillations
at such low reduced velocities must be subject to another physical mechanism which is not
reproduced in the present model or in QST or UAT. The interaction with vortex shedding,
even if it is perturbed here by the free-stream turbulence, is probably responsible for this,
as was shown for the square section by Bearman et al. (1987).

5. CONCLUSIONS

An experimental and numerical study of the aeroelastic behaviour of slender rectangular-
and square-section cylinders was presented.
The experiments were performed with a flexible cylinder clamped at both ends, which

led to unusual lock-in of the vortex shedding with different bending modes, although the
final steady oscillations occurred in the fundamental mode. The low Reynolds number of
the study might be an important parameter.
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In the galloping regime, critical velocities were detected which do not correspond to
calculations using the quasi-steady theory. In particular, a small increase in the free-stream
turbulence intensity reduces the critical velocity, a fact which, as far as we know, has not
been reported before. A simple model of galloping was proposed to fit the experiments
better, but some of the configurations in turbulent flow are probably interacting with the
vortex shedding, making the model ineffective. This model is based on a time-delayed
force, where the time lag is linked to the main period of natural vortex shedding. As long
as the Strouhal number exists and is larger than the reduced frequency, the proposed
model can be used, and it improves the standard quasi-steady theory.
Wall-pressure distributions, obtained numerically on a 2-D rectangular section, were

analysed using the proper orthogonal decomposition technique. New indicators were
proposed in order to link the proper functions with the aerodynamic force components,
and then the proper shapes of the pressure were classified. It was shown, by comparing the
static and forced oscillation cases in the galloping range, that secondary vortices inside the
shear layer become symmetrical and their effect on the forces is cancelled. Moreover, it
was found that not all the proper shapes are involved in the aeroelastic coupling, some of
them being similar with and without vibrations.
These conclusions might not be correct for higher aspect ratios, such as those of a bridge

deck, where coupling with the movement is of a different kind. In any case, the POD
technique showed a great potential for analysing pressure data, especially for the
aeroelastic problem, and its application should become generalised for experimental data
processing.
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APPENDIX: NOMENCLATURE

a angle of attack, degree
dnm Kronecker symbol, 1 if n=m, 0 otherwise
Z damping ratio
Z1 Nonlinear damping coefficient
li ith eigenvalue
mi ith principal component in the POD
n air viscosity, m2/s
r air density, kg/m3

t time lag, s
tr reduced time lag, tr ¼ tV=e
o circular frequency, rad/s
c chord (flowwise dimension) of the cylinder, m
CM pitching moment coefficient referred to the centre of mass
Cx drag coefficient
Cz lift coefficient
e thickness of the cylinder, m
f bending frequency, Hz
fr reduced frequency fr ¼ f e=V
fv frequency of vortex shedding, Hz
I turbulence intensity (longitudinal component)
k angular reduced frequency, k ¼ 2p fr
L length (spanwise) of the cylinder, m
Lx longitudinal length scale of turbulence, m
m mass of the cylinder per unit length, kg/m
M mesh size of the turbulence generation grid, m
P(X,t) wall pressure distribution, function of space X and time t
Re Reynolds number, Re ¼ Vc=n
Rc correlation matrix of the pressure distribution
Sc Scruton number, Sc ¼ 2Zm=r e2

St Strouhal number St ¼ fne=V
tr reduced time tr ¼ tV=e
V wind mean velocity, m/s
Vr reduced velocity, Vr ¼ 1=fr
Wi ith eigenvector or proper function
x longitudinal coordinate
z vertical coordinate
’zz vibration velocity of the cylinder (vertical), m/s
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