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Abstract

This paper presents experimental evidence of the transient growth of energy for the coupled-mode flutter of an airfoil.

The phenomenon occurs even in linearly stable dynamical systems. Its application is new in the context of

fluid–structure interactions where only theoretical and numerical studies of transient growth exist. The experimental

set-up allows an NACA 0015 airfoil to oscillate in rotational and vertical degrees of freedom when it is subjected to air-

flow. Measurements consist of time series of the two motions obtained by laser displacement sensors. Structural

parameters are first estimated without air-flow. The transient evolution of energy is measured, and amplification is

observed for a given set of initial conditions. Our experiments agree well with numerical simulations based on unsteady

airfoil theory.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In linear flutter studies, it is common to assume that the system amplitude behaves exponentially in time, decaying or

growing depending on the wind velocity. The analysis then follows a normal modes approach where the long time

behaviour is sought, particularly the critical value of the wind velocity, which determines the limit between stable and

unstable behaviour.

In the field of hydrodynamic stability (Butler and Farrell, 1992), it has been found in recent years that energy growth

can transiently occur in the subcritical parameter range of linear systems. This was mathematically formalized by

Schmid and Henningson (2001) and references therein. This mechanism leads to an initial amplification of energy of the

system, followed by monotonic decay due to the asymptotic stability of the system. This phenomenon is referred to as

transient growth of energy.

Transient growth may be observed in dynamical systems that are generated by nonnormal operators. These systems

have a set of nonorthogonal eigenfunctions, and any initial conditions expressed in this eigenfunction basis may

undergo short-term amplification—despite the absence of unstable eigenvalues—which stems from an initial

cancellation of multiple modes that ceases to exist as time progresses. This behaviour is inherent to the system and

cannot be captured by considering individual modes and their corresponding eigenvalues. The asymptotic long-time
e front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

Ai aeroelastic coefficients for pitching moment

(i ¼ 1; ::; 4)
b, c span and chord of the profile (m)

C0z derivative of lift coefficient

d distance between centre of gravity G and

axis of rotation O (m)

E mechanical energy (J)

Fz lift force (N)

f frequency (Hz)

Hi aeroelastic coefficients for lift force

(i ¼ 1; ::; 4)
JO inertia of the rotational motion around O

(kgm2)

k stiffness (Nm/rad) or (N/m)

MO pitching moment at axis of rotation O (Nm)

m mass involved in the vertical motion (kg)

U wind velocity (m/s)

Uc critical wind velocity (onset of flutter) (m/s)

z vertical coordinate of centre of gravity (m)

Greek symbols

a angle of rotation (rad)

Z reduced structural damping

l eigenvalue (rad2/s2)

r air density (kg/m3)

o angular frequency (rad/s)

Subscripts

0 initial conditions

1 or 2 coupled motions

z pure vertical motion

a pure rotational motion
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behaviour, though, is governed by the least stable eigenvalue. In physical terms, the linear system supports dynamics

that cannot be described by purely exponential behaviour and that manifests itself in a composite, multi-modal response

to initial conditions.

Theoretical and numerical studies were recently performed on various fluid–structure systems, which

showed the possibility of transient growth in this kind of applications (Schmid and de Langre, 2003; Hémon

and Noger, 2004). From an engineering point of view, transient growth might explain the premature structural

fatigue encountered in structures subjected to wind. Another important feature of transient growth is that, if

the growth is sufficiently large, a nonlinear instability can be triggered, even if the system is linearly stable at small

amplitudes. This scenario could be interpreted as a by-pass mechanism leading to flutter instability below the linear

critical velocity.

The objective of this paper is to present for the first time experimental evidence of transient growth for the coupled-

mode flutter of an airfoil. Starting from this standard application, it is reasonable to believe that transient growth may

be present for other kinds of elongated structures that are susceptible to coupled-mode flutter when subjected to cross-

flow. Preliminary results of this study were presented at the 5th Colloquium on Bluff Body Aerodynamics and

Applications, Ottawa, Canada, July 11–15, 2004.

The paper is organized as follows. First we describe airfoil flutter using a standard model. The experimental set-up

and the results are then described and discussed in Section 3 and compared to numerical simulations of the problem.
2. Classical airfoil flutter

2.1. Structural modelling

We recall in this section the main features of coupled flutter of an airfoil, which can simultaneously oscillate

transversely to the flow and in torsion, as shown Fig. 1. The axis of rotation and the centre of gravity are separated by a

distance d, which induces structural coupling between the two degrees of freedom z and a. The equations of motion read

[see Fung (1993)]:

m€zþ 2mZzoz _zþ kzzþmd €a ¼ Fz,

JO €aþ 2JOZaoa _aþ kaaþmd €z ¼MO. ð1Þ

The eigenvalues for the noncoupled case (d ¼ 0) are

la ¼ o2
a ¼ ð2pf aÞ

2
¼ ka=JO; lz ¼ o2

z ¼ ð2pf zÞ
2
¼ kz=m. (2)
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Fig. 1. Airfoil geometry.
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For the more general coupled case, it can be shown that the distance d between the centre of gravity and the axis of

rotation modifies the eigenvalues, so that

l1 þ l2 ¼ lz þ la
1

1�md2=JO

, (3)

where the eigenvalues of the coupled system are l1 and l2.
The total energy is the sum of kinetic and potential energy, which reads

EðtÞ ¼ 1
2

m_z2ðtÞ þ 1
2
JO _a2ðtÞ þmd _aðtÞ_zðtÞ þ 1

2
kzz2ðtÞ þ 1

2
kaa2ðtÞ. (4)

This quantity will be used to quantify transient growth. It will be nondimensionlized by the initial energy E0

determined from the initial conditions. The maximum value of EðtÞ, as observed from the time series, will be denoted as

Emax.
2.2. Aerodynamic effect

The linear aerodynamic loads can be modelled using Scanlan’s (Scanlan and Tomko, 1971) flutter derivatives

Fz ¼
1
2
rbcU2ðH1 _zþH2 _aþH3aþH4zÞ,

MO ¼
1
2
rbc2U2ðA1 _zþ A2 _aþ A3aþ A4zÞ, ð5Þ

where the flutter derivatives, or aeroelastic coefficients, can be expressed with the help of Unsteady Airfoil Theory

(UAT). The reduced velocity is defined based on the profile chord and the frequency of each pure motion, i.e.,

Ur ¼
U

cf z

or Ur ¼
U

cf a
. (6)

All the aeroelastic coefficients of Eq. (5) are expressed using the Theodorsen function (Theodorsen, 1935)

CðKÞ ¼ F ðKÞ þ iGðKÞ, where the reduced circular frequency is K ¼ 2p=Ur. After some manipulations, this leads to

(Fung, 1993)

H1 ¼
�1

U
C0zF ; H2 ¼

c

U
C0z

1

4
þ

G

K
þ

F

2

1

2
� a

� �� �
,

H3 ¼ C0z F �
KG

2

1

2
� a

� �
þ K2 a

8

� �
; H4 ¼

1

c
C0z

1

4
þ

G

K

� �
K2,

A1 ¼
�1

U
C0z

F

2

1

2
þ a

� �
; A2 ¼

c

U
C0z

1

8

1

2
� a

� �
�

G

K

1

2

1

2
þ a

� �
þ

F

4
a2 �

1

4

� �� �
,

A3 ¼ C0z
1

16
a2 þ

1

8

� �
K2 þ

F

2

1

2
þ a

� �
þ

KG

4
a2 �

1

4

� �� �
; A4 ¼ C0z

K2

2c

a

4
þ

G

K

1

2
þ a

� �� �
. ð7Þ

The parameter a is the dimensionless distance between the axis of rotation O and the mid-chord location based on a

reference length c=2. It is equal to �1=2 in our case. Note also that for an NACA 0015 profile, the aerodynamic centre is

located at the forward quarter-chord point, which also coincides with the axis of rotation O.
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In practice, the terms H4 and A4 have a negligible influence at large reduced velocities for our chosen range of

parameters. Moreover, it can be useful to introduce the Quasi-Steady Theory assumption (Fung, 1993) in order to

simplify the above expressions, hence

H1 ¼
�1

U
C0z; H2 ¼ 0; H3 ¼ C0z; H4 ¼ 0,

A1 ¼ 0; A2 ¼
�1

8

c

U
C0z; A3 ¼ 0; A4 ¼ 0. ð8Þ

The static lift derivative C0z is theoretically equal to 2p for a thin profile at low angle of attack within the assumptions

of potential flow. But in practice, its value depends on the Reynolds number, especially in the lower parameter range of

our experiments.

Combining Eqs. (1), (5) and (8), we have

€zþ 2ozðZz þ ZazÞ_zþ o2
zzþ d €a ¼

rbU2
r

2cf 2
zm

C0za,

€aþ 2oaðZa þ ZaaÞ_aþ o2
aaþ

md

JO

€z ¼ 0, ð9Þ

in which the uncoupled added aerodynamic dampings have been rewritten in the form of a reduced damping, such that

Zaz ¼
rbc2

2m
Ur; Zaa ¼

rbc4

64JO

Ur. (10)
2.3. Critical flutter velocity of the undamped system

In a first step, the critical velocity is deduced from the undamped coupled system (9), which is reduced to

€zþ o2
zzþ d €a ¼

rbU2
r

2cf 2
zm

C0za,

€aþ o2
aaþ

md

JO

€z ¼ 0. ð11Þ

Onset of flutter for this system arises when the eigenvalues become complex, at which time the two frequencies

become equal. This occurs when

det

l� lz ld þ
rbU2

r

2cf 2
zm

H3

lmd

JO

l� la

���������

���������
¼ 0, (12)

which leads to finding the smallest root U2 of the second-order equation

lz þ la þ
drbcU2

2JO

C0z

� �2

� 4lalz 1�
md2

JO

� �
¼ 0. (13)

The critical velocity is finally given by

U2
c ¼
�2JO �ðlz þ laÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4lalz

lzþla
l1þl2

q� �
rbcdC0z

, (14)

and the frequency of flutter, determined for the critical velocity, is

f 2
c ¼

1

ð2pÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lalz

l1 þ l2
lz þ la

s
. (15)
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3. Experimental evidence

3.1. Experimental set-up

The wing profile is a NACA 0015 with a chord of 0.12m and a 0.17m span. It is built from Plexiglas using a

numerical milling machine. The resulting surface is smooth without artificial roughness. The profile is mounted in a

small Eiffel wind tunnel with a closed square test-section of 0.180m width. The wind stream is produced by a centrifugal

fan with an electric power of 2500W mounted downstream and exhausting the air-flow vertically. The mean velocity in

the test-section can vary from 2 to 25m/s, with a turbulence level of 1.5% at 10m/s.

The axis of rotation of the profile is located at its forward quarter-chord and passed through the wind tunnel walls

inside two vertical fences. The axis is suspended via bearings at the extremities of two long flat bands of aluminium

alloy, such as laminated springs (see Fig. 2). Their length, width and thickness is 400, 20 and 2mm, respectively.

Adjustment of the frequency was accomplished by adjusting the thickness to approximately 1mm near the clamping

using a milling machine. The torsion frequency is set by two series of linear springs.

The measurements are obtained from two laser displacement sensors, one for the vertical bending motion, and the

other one for the combined movement of torsion and bending. The measurement resolution is 40 mm and the accuracy is

better than 1% of the full-scale range (710mm). The output signals of these sensors are digitized with a PAK system

provided by Müller BBM (24 bits resolution). The sampling frequency was chosen as 512Hz, and a DC coupling is used

in both channels. Recovery of the physical quantities in terms of vertical position, angle of torsion and energy is

performed directly within the measurement system by numerical post-processing.

Transient records are triggered automatically so that the starting point is repeatable, and initial conditions are

recorded through the DC coupling of the measurement chain. Note that in the computation of the energy, it is essential

to ensure that the system at rest (without wind) provides a zero constant signal, due to the necessary differentiation

process for obtaining the velocities.

3.2. Identification of structural parameters

The structural parameters are determined without wind. First we deal with the two motions separately. We measure

the natural frequencies fa and fz by spectral analysis and the stiffness ka and kz by static calibration. Then, we deduce the

inertia JO and m from Eq. (2).

The frequencies f 1 and f 2 of the coupled system are then measured and the distance d is deduced from Eq. (3). The

results are given in Table 1.

Structural damping is measured for each degree of freedom independently. For vertical motion, the system has a very

a low damping of Zz ¼ 0:40%. For torsion, the mechanical assembly, especially the bearings, introduce damping, which

is found to be a function of the amplitude of the oscillations. It varies from 10% for amplitudes around 21 to 6% for

higher amplitudes around 71.

In order to validate these results, we reproduce an experimental test without wind by numerical simulation and

compare the results in Fig. 3. The initial condition is a small vertical offset in the downward direction, leading to a

nonzero initial value for z and a small positive angle of torsion, as a consequence of the coupled mechanical system. It
Torsion springs

Laminated spring

Bearing

z (t)

α (t)

Laser displacement sensors 

Wind

Fig. 2. Experimental set-up.
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Table 1

Measured structural parameters

f a (Hz) f z (Hz) ka (Nm/rad) kz (N/m) f 1 (Hz) f 2 (Hz) JO (kgm2) m (kg) d (m)

2.597 3.613 0.1140 436.0 2.441 4.004 0.00042365 0.846 �0.00706
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Fig. 3. Time history of vertical displacement, angle of rotation and corresponding dimensionless total energy without wind (U ¼ 0).

Initial conditions are z0 ¼ �1:85mm, a0 ¼ 0:51. —, Experiments; yy, computation using Eq. (1).
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should be mentioned that, because of the laminated spring, a vertical displacement induces a small angle of rotation,

which is taken into account in the recovery procedure of the pitch angle a.
In the experiments, the initial energy is weakly perturbed by the DC value of the measured components, leading to

spurious oscillations during the decay. It will be seen later that these perturbations can be treated as noise and that the

signal of interest is substantially larger. In Fig. 3, the agreement between experimental and numerical results is very

good and thus validates the measured structural parameter values. It is of importance to note that the relevant energy in

this approach is the total energy as defined by Eq. (4), not any of its components which all oscillate in time.
3.3. Identification of aerodynamic damping and critical velocity

The experimental critical velocity Uc is found to be 9.0m/s, compared to 7.83m/s given by Eq. (14) using the lift slope

C0z ¼ 2p. Two reasons may cause the difference: (i) the effect of damping, especially in torsion, which has a stabilizing

effect and increases the critical velocity; (ii) a Reynolds number effect (Re ¼ 72 000 at the onset of flutter) because the
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laminar–turbulent transition of the boundary layer over the profile has a significant influence on the lift slope in this

regime.

However, the numerical simulations of the full model (7) lead to a critical velocity equal to 9.28m/s in very good

agreement with the experiments. Therefore, the numerical simulations shown later in this paper will be based on Eq. (7),

taking into account all relevant terms.

Good agreement is obtained for the flutter frequency: 3.26Hz (experimental), versus 3.145Hz (Eq. (15)). Note that

this frequency was experimentally determined at a velocity just before the onset of flutter, in order to make the

measurements with a nondiverging system.

For the added damping, agreement with relations (10) and experiments is also good. For vertical motion, the

experimental value is 1.98% at Ur ¼ 21, compared to 1.82% from theoretical calculations. For torsion, the added

damping at Ur ¼ 29 is approximately 3.5% compared to the theoretical value of 4.52%, but a high experimental

uncertainty due to the high structural damping at zero velocity should be expected.
3.4. Transient growth measurements

We proceed by applying the initial conditions in z and a, as described above, to the system with several wind velocities

just under the critical velocity. A typical time series is shown in Fig. 4, where an amplification of the energy by a factor

of about 2 can clearly be observed. A the same time, the angle of attack reaches a value of nearly 61, whereas it remained

under 41 without wind, see Fig. 3. This is consistent with the fact that an amplification of energy by a factor of 2 induces

an amplification by a factor of
ffiffiffi
2
p

of the displacement.
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Fig. 4. Time history of vertical displacement, angle of rotation and corresponding dimensionless total energy with U=Uc ¼ 0:92.
Initial conditions as in Fig. 3. —, Experiments; yy, computation using UAT, Eqs. (1), (5) and (7).



ARTICLE IN PRESS
P. Hémon et al. / Journal of Fluids and Structures 22 (2006) 391–400398
In Fig. 5, the maximum amplification of energy is plotted for a number of tests versus the velocity parameter

1�U=Uc as defined by Schmid and de Langre (2003). In the experiments, the amplification occurs for velocity

parameters below 0.30 and the amplification reaches a saturation value of about 2.5 just before the onset of flutter.

The numerical simulation using UAT, Eq. (7), demonstrates a remarkable agreement with experiments. This shows

that for transient behaviour simulations, it is essential to account for all coefficients Hi and Ai, including those that are

usually considered negligible in the long-term stability problem.
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Fig. 5. Maximum amplification of energy Emax/E0 versus velocity parameter 1�U/Uc for initial conditions z0 ¼ �1:85mm and

a0 ¼ 0:5�. J, Experiments; yy, computations using UAT.
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Fig. 6. Maximum amplification of energy Emax/E0 versus velocity parameter 1�U=Uc for initial conditions z0 ¼ 0:5mm, a0 ¼ �1:6�,
_z0 ¼ �38mm=s and _a0 ¼ �60�=s. J, Experiments; yy computations using UAT.
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Fig. 7. Maximum amplification of energy Emax/E0 versus velocity parameter 1�U=Uc. Computations using UAT for optimal initial

conditions z0 ¼ �2mm and a0 ¼ þ6�.
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3.5. Effect of the initial conditions

We now use a different set of initial conditions. The experimental procedure consists of dropping a small mass (50 g)

on the profile from a given height. The measurement trigger remains linked to one of the channels. The purpose is to

introduce initial conditions in velocities _a and _z with maximum repeatability.

This technique leads to the set of initial conditions z0 ¼ 0:5mm, a0 ¼ �1:6�, _z0 ¼ �38mm=s and _a0 ¼ �60�=s. The
maximum amplification of energy versus the velocity parameter is plotted in Fig. 6. Transient amplification of energy is

clearly observed for the chosen parameter range and is in good agreement with theoretical predictions. Note that for

this type of initial condition, the critical velocity cannot be approached, in practice, as much as in the preceding case.

Still, theory predicts transient growth up to the critical velocity.

It is interesting to numerically determine the set of initial conditions that would lead to the maximum amplification

rate. Exploring the space of all possible initial conditions, these were found to be z0 ¼ �2mm, a0 ¼ 6�, _z0 ¼ 0mm=s
and _a0 ¼ 0�=s. The corresponding amplification is shown in Fig. 7. We observe a saturation value of 4.6, which

constitutes a rather large amplification.

It has been shown that transient growth can induce higher stresses in the structure than is usually admissible for a

stable aeroelastic system. From an engineering point of view, a study of transient energy growth should be part of any

design process of a structure, especially as far as the fatigue effects are concerned. It is also possible that a by-pass

transition to an unstable regime can occur for systems with a subcritical unstable nonlinear branch.
4. Conclusion

We presented experimental evidence of transient growth of energy before coupled-mode flutter of an airfoil. This

mechanism has been shown before for various fluid–structure systems using theoretical and numerical simulation, but

without experimental proof. An experimental set-up was presented which allowed a NACA 0015 profile to oscillate in

vertical motion and in torsion. The transient behaviour of this system starting with specified initial conditions showed a

transient amplification of energy before the usual exponential decay. UAT was found to reliably capture the

phenomenon, as long as all relevant terms are included in the simulations.

In terms of applications to vehicle aeroelasticity or wing flutter, the results presented here suggest that, even below the

critical velocity, large amplitude vibrations may result from natural transient loading.
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This phenomenon might explain some premature fatigue of wind-excited structures. Moreover, it could be

responsible for a by-pass transition to an unstable regime by nonlinear amplitude effects. A study of transient growth is

recommended for the fatigue analysis of structures that are submitted to wind loads.
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