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Unsteady fluid forces are measured at the onset of flutter and during the post-critical
flutter of flags placed in a wind tunnel, focusing on the drag force and the moment around
the flagpole. The evolution of these forces during flutter mode switches, induced by
varying either the mass ratio or the wind velocity, is discussed by using additional high-
speed imaging. For the highest wind velocities, losses of periodicity and snapping events
are reported. Time-averaged and unsteady drag coefficients are reported and compared to
previous works.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In the early 1930s, the need to design airplanes towing advertising banners led Fairthorne to study the drag of flags and
more particularly the additional drag due to flutter (Fairthorne, 1930). In a wind tunnel, he measured drag coefficients for
many cloth flags and he provided empirical formulas. This pioneering work led to the curious conclusion that the longer the
flag, the smaller the drag. Later, Hoerner recovered Fairthorne's data and stressed the fact that fluttering flags had an
additional time-averaged drag 10 times higher than the skin friction drag (Hoerner, 1965). Taneda (1968) confirmed this
huge increase of drag with a broader range of materials.

Interestingly, these works gave rise to innovative decelerators based on flutter-induced drag force, such as elementary
parachutes on falling bodies (Lokerson, 1968). Similarly, observations of sailors removing veil flutter to speed up their race
suggested to use flags for improving vehicles braking (Bourrières, 1969). Flags were also studied for stabilizing the rotary
motion of projectiles (Fancett and Clayden, 1972) or for preventing side-impact of rockets (Auman and Wilks, 2005).

Time-averaged drag coefficients of fluttering flags can be found in a few recent publications (see Carruthers and
Filippone, 2005; Wilk and Skuta, 2009; Morris-Thomas and Steen, 2009). A simple model was suggested by Moretti (2003),
who extended the works of Thoma (1939a,b) to estimate time-averaged tension at the flagpole from the loss of kinetic
energy at the trailing edge of flags. This elementary model was confirmed by experiments on heavy flags in a wind tunnel
(Martin, 2006). A fresh look on the time-averaged drag of flags was recently offered by Ristroph and Zhang (2008) with the
configuration of tandem flags: the leading flag suffers from less drag than the downstream flag, i.e. the opposite of the
intuitive steady drafting situation (see also the subsequent works of Alben, 2009; Zhu, 2009; Kim et al., 2010).

In practice, the use of time-averaged drag coefficients hides the profound nature of instantaneous drag which varies with
time and which – above all – is not necessarily periodic. A striking example is given by snapping events (irregular and
violent accelerations) which are predicted above the threshold of instability (see Connell and Yue, 2007; Alben and Shelley, 2008;
Michelin et al., 2008). However, we did not find experimental studies on unsteady forces acting on a flagpole, despite numerous
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and leading applications. This is the strongest motivation of the present paper, the other motivations being to report new
visualizations of flutter mode switches and new evidences of loss of periodicity and snapping events above the threshold of
instability.

The flag flutter motivated many theoretical works as well, most of them starting from a note of Lord Rayleigh on liquid
jets destabilization: “[…] Its bearing upon the flapping of sails and flags will be evident. […]” (Lord Rayleigh, 1878). The
modeling of flag flutter above the threshold of instability is still in progress to provide a complete picture of flag dynamics
(see Païdoussis, 2004; Shelley and Zhang, 2011, for recent reviews on flag models). Flag models also promise excellent
perspectives for wind energy harvesting (see Tang et al., 2009; Doaré and Michelin, 2011; Dunnmon et al., 2011; Michelin
and Doaré, 2013), and some models are specifically designed for predicting flutter-induced forces on the flagpole (see
Connell and Yue, 2007; Alben and Shelley, 2008; Michelin et al., 2008). In this context as well, it was necessary to have an
experimental background for flutter-induced forces on the flagpole.

The present paper is organized as follows: experimental techniques are introduced in Section 2; the onset of flutter is
studied in Section 3, where unsteady forces acting on the flagpole are discussed when the flag length is varied; the flutter
beyond boundary of instability is addressed in Section 4, where unsteady forces acting on the flagpole are discussed when
the wind velocity increases. In Section 5, we discuss the relative importance of unsteady drag to time-averaged drag.
A summary of the findings is provided in Section 6.

2. Experimental techniques

In this section, we first present geometric parameters and material properties of flags, then the wind tunnel is briefly described
and the force measurement system is detailed. We conclude by explaining the measurement process with an example.

2.1. Flags

Rectangular flags are cut in the 29.7 cm direction of A4 sheets of paper (Clairalfa 120 g/m2), which is the principal fiber
direction. These flags have a thickness d¼ 150 μm and a mass density ρp ¼ 790 kg=m3. The flag length (chord) is varied in
the range L ¼ 70–290 mm. The flag width (span) is unchanged: H ¼ 100 mm. The width-to-length ratio Hn ¼H=L is thus
varied in the range Hn ¼ 0:3–1:4.

A usual method for determining elastic properties of a material is to measure Young's modulus (E) by a tensile test (see
Watanabe et al., 2002b). As shown in Fig. 1(a), a tensile test assesses the validity of the elastic deformation hypothesis
(tensile stress r yield stress) and gives a tear criterion (tensile stress ¼ ultimate strength). We measured E¼ 3:370:2 GPa
(mean value 7standard deviation on four tests). This value is consistent with common Young's modulus of paper in the
principal fiber direction (see Yamaguchi et al., 2000b; Alava and Niskanen, 2006).

However, this method gives only an ideal (under)estimation of the flexural rigidity D¼ Ed3=12ð1�ν2Þ, where d is the flag
thickness and ν is Poisson's ratio. Indeed, the flag suffers from unavoidable flatness defects (curvature) at the flagpole
fixation. Since flatness defects are large compared to flag thickness, they have a significant influence on the onset of flutter,
as recently shown in Eloy et al. (2012). Accordingly, we decided to measure an effective flexural rigidity, taking into account
the flagpole fixation. The effective flexural rigidity can be measured on vertical paper sheets standing vertically on a fixation
similar to the flagpole fixation (see Lemaitre et al., 2005). Then, the method is based on the critical sheet length (Lb) above
which Euler's buckling occurs: this is illustrated in Fig. 1(b). Several tests were performed for compensating uncertainty. We
finally deduced the flexural rigidity fromDC0:13ρpgdL

3
b , where ρp is the paper mass density, g the gravity acceleration and d

the flag thickness (Timoshenko and Gere, 1963). Flags have a buckling length Lb ¼ 226716 mm and thus we obtain
D¼ 1:770:2 mN m (mean value 7standard deviation on 72 tests). This value of flexural rigidity is associated with an
effective Young's modulus E¼ 5:970:7 GPa far greater than the previous estimation. This effective flexural rigidity will be
used in the present work for nondimensionalization. Note that flatness defects are probably removed during flutter due to
Fig. 1. Elastic properties of the flag material (paper): (a) stress–strain curve obtained from a tensile test in the longitudinal direction of the flag;
(b) measurement of the buckling length.



Fig. 2. Wind tunnel characteristics: (a) top view of the wind tunnel, containing a fluttering flag fixed on its flagpole; (b) side view; (c) snapshot of a flag of
length L ¼ 200 mm fluttering in the wind tunnel at a wind velocity U ¼ 12 m/s; outside the wind tunnel the force measurement system is designed with
four piezoelectric force sensors connected to the flagpole.
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the energetic cost of having a non-zero Gauss curvature (Eloy et al., 2012). The flattening during flutter is however difficult
to confirm experimentally because the characteristic length scale is essentially the flag thickness (� 100 μm).

2.2. Wind tunnel

The flag is placed in an Eiffel-type wind tunnel with a rectangular test-section: width � height ¼ 260 mm � 240 mm.
Several views of this set-up are offered in Fig. 2. The flag is clamped inside a flagpole of thickness 4 mm and height 140 mm.
Tests are performed for a wind velocity varying from 3 to 18 m/s, and the turbulence level – the relative importance of velocity
fluctuations in the wind tunnel – is approximately 0.4% over this velocity range. Accordingly, the Reynolds number based on the
flag length (L) falls in the range ReL ¼ 1:4� 104–3:4� 105. Due to the bluff rectangular section of the flagpole, the boundary
layer all along the flag is probably turbulent in our experiments. A high-speed video camera VDS Vosskühler HCC1000 records
the flag motion from the top of this wind tunnel. It captures 462 frames per second (exposure time ¼ 2.16 ms) with a resolution
of 1024� 1024 pixels. In practice, this is sufficient to observe approximately 20 frames per flapping period.

2.3. Unsteady forces acting on the flagpole

A particular attention was devoted to the design of a rigid force measurement system (balance) which consists of a
flagpole connected to four piezoelectric force sensors Kistler 9712B5 (load cells) which only record force fluctuations (no
time-averaged value).

The force sensors are connected to an acquisition system PAK provided by Müller-BBM, whose sampling rate is 1024
acquisitions per second. The duration of acquisition is 14 s: for a flag flapping at 10 Hz, this includes 140 flapping periods.
Concerning frequency analysis, noise is reduced by treating independently six blocks of 4 s (with an overlap of 50%); the
resulting frequency resolution is then 0.25 Hz.

Linear combinations of the four signals of force sensors are done to reconstruct the unsteady drag force DðtÞ�〈DðtÞ〉 and
the unsteady moment (torque) around the flagpole MðtÞ�〈MðtÞ〉, where 〈⋯〉 means time-averaged value. Note that 〈MðtÞ〉 is
generally zero (for symmetric flapping), whereas 〈DðtÞ〉 is generally positive. The linear combinations are identified out of
wind tunnel, with a calibration based on standard deviations (“root-mean-square” deviations):

sD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈DðtÞ2〉�〈DðtÞ〉2

q
; sM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〈MðtÞ2〉�〈MðtÞ〉2

q
:

Known periodic forces and moments are applied to the flagpole by using several spring–mass oscillators. Applied forces
are measured with a fifth force sensor (PCB 208C01). The validation of the calibration procedure can be appreciated in Fig. 3,
where the applied forces are compared to the reconstructed ones. The frequency range explored during calibration is f ¼
2–5 Hz and the unsteady force range explored is characterized by sD ¼ 40–140 mN and sM ¼ 10–200 mN m. The worst error



Fig. 3. Calibrations of unsteady forces characterized by their standard deviations: (a) unsteady drag force; (b) unsteady moment around the flagpole;
dashed lines are guides for eyes.
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is then 7% for sD and 9% for sM . According to the high sensitivity of the piezoelectric force sensors (deviation from linearity
less than 1% in the range 0.5–20 000 mN), the calibration is assumed to be valid in the force range of our experiments:
sD ¼ 1–200 mN and sM ¼ 1–5 mN m.

During wind tunnel tests, measurements can be corrupted by resonance between the natural frequencies of the force
measurement system and the flag flapping frequency. The first natural frequency of the force measurement system is
approximately 90 Hz. Consequently, we select flags having a low-frequency flutter in order to avoid interactions with the
force measurement system. Signals from sensors are also filtered to keep an immaculate frequency range 0–60 Hz.

Another corruption might come from vortex-induced forces generated at the flagpole. The flag is somewhat like a splitter
plate (see Shukla et al., 2009), and thus vortex shedding only occurs on the lower part of the flagpole. According to the
rectangular geometry of the flagpole, vortex shedding is characterized by a constant Strouhal number St¼ fe=U close to 0.1
(Hémon, 2006), where e is the flagpole thickness (e ¼ 4 mm). Vortex shedding is thus generated with a frequency larger
than 200 Hz in the wind velocity range of our experiments. In practice, the motion observed during wind tunnel tests is well
dominated by a low frequency flutter (f r50 Hz).

2.4. Measurement process

Let us illustrate the measurement process with a concrete example. For this purpose, we select a flag of length L ¼ 140 mm
fluttering at a wind velocity U ¼ 8.6 m/s. The reconstruction of unsteady drag force and moment around the flagpole is shown
in Fig. 4(a) and (b). We first notice that unsteady fluid forces are quasi-periodic and that the period for the moment around the
flagpole is larger than the period of the drag.

To analyze more deeply unsteady fluid force signals, a frequency analysis based on Power Spectral Densities (P:S:D:) is
performed with P:S:D:¼ jF:F:T:ðXÞj2=T , where X(t) refers to either D(t) or M(t), F:F:T: is the Fast Fourier Transform and T is the
duration of X(t). The power spectral densities of unsteady fluid forces are shown in Fig. 4(c) and (d), showing clearly that the
dominant frequency of unsteady drag (C38 Hz) is twice the dominant frequency of unsteady moment (C19 Hz). This
means that, unsurprisingly, a flapping to the left and a flapping to the right influence the drag identically. Standard
deviations of full temporal signals are, respectively, sDC18 mN and sMC1:2 mNm. The square root of the integral of power
spectral density over the frequency domain gives back the same standard deviations, as predicted by Parseval's identity.

In the present paper, standard deviations and power spectral densities of unsteady fluid forces will be studied as a
function of flag length in Section 3 and as a function of wind velocity in Section 4.

3. Unsteady fluid force evolution with flag length

In this section, we start by introducing suitable dimensionless parameters. Then, unsteady fluid forces existing along the
boundary of flutter instability are discussed. This boundary is explored by varying the length of the flag.

3.1. Choice of dimensionless parameters

Previous studies emphasized the role of some dimensionless parameters which compare the roles of inertia, elasticity
and fluid pressure on the flag. Firstly, the flag length L is usually expressed by a fluid–solid mass ratio (see Eloy et al., 2007;
Tang and Païdoussis, 2007; Michelin et al., 2008):

Mn ¼ ρaL
ρpd

; ð1Þ



Fig. 4. An example of unsteady force measurement in the case of a flag of length L ¼ 140 mm fluttering at a wind velocity U ¼ 8.6 m/s: (a) selection of
200 ms from the reconstruction of unsteady drag force; full temporal signal in the inset (14 s); (b) unsteady moment around the flagpole; (c,d) respective
power spectral densities of full temporal signals, in logarithmic scale; arrows and vertical dotted lines indicate dominant frequencies.
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where d is the flag thickness and ρa, ρp, respectively, stand for the mass density of air and flag (paper). Accordingly, the mass
ratio compares the displaced fluid mass to the displaced solid mass. It arises naturally from a two-dimensional stability
analysis (see Eloy et al., 2007).

Then, it is instructive to compare the wind velocity U to the characteristic phase velocity of in vacuo bending waves of the

flag Uφ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=ρpd

q
=L, where D is the flexural rigidity of the flag (Landau and Lifshitz, 1986). The quantity Un ¼ U=Uφ

compares characteristic time of free vibration (�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρpd=D

q
L2) – which balances flag inertia and elasticity – to passing time of

fluid along the flag (� L=U) (see Tang and Païdoussis, 2007)

Un ¼
ffiffiffiffiffiffiffiffi
ρpd
D

s
LU: ð2Þ

Another choice of dimensionless parameters is widespread: the mass ratio can be defined by 1=Mn and a dimensionless
velocity is given by Un

ffiffiffiffiffiffiffi
Mn

p
(see Connell and Yue, 2007; Alben and Shelley, 2008)

Un
ffiffiffiffiffiffiffi
Mn

p
¼

ffiffiffiffiffiffiffiffiffi
ρaL

3

D

s
U: ð3Þ

This second dimensionless velocity balances characteristic fluid pressure force (� ρaU
2 HL) to characteristic elastic

restoring force (�DH=L2), and turns out to be constant in the lowMn limit (see Argentina and Mahadevan, 2005; Alben and
Shelley, 2008).

An additional dimensionless number Hn ¼H=L was introduced in order to assess the relevance of slender flag models
(Hn≪1) as opposed to two-dimensional flag models (Hn≫1) (see Eloy et al., 2007).

In the present paper, the indication of dimensionless numbers (Mn, Un), when it is possible, is intended to facilitate the
comparison with most of previous and forthcoming studies. We do not work at Hn fixed during our experiments but atMnHn

fixed (with MnHn ¼ 1:0), and we vary independently Mn (or Hn) in Section 3 (here) and Un in Section 4.

3.2. Onset of flutter

The mass ratio is varied in the range Mn ¼ 0:7–2:8 by cutting a flag of initial length L ¼ 290 mm down to L ¼ 70 mm, by
increments of 10 mm. The resting state of flags is straight, but a small spanwise twist r51 is visible on the longest flags. The
initial flag is not removed from the flagpole between each measurement in order to reduce the influence of flagpole fixation
on the flag flexural rigidity.

When increasing wind velocity for a given length, the flag remains straight below a critical flutter velocity of the wind
Ucf . When decreasing wind velocity, the flag returns to a straight position at a critical rest velocity of the wind Ucr always
lower than the critical flutter velocity Ucf . The scenario observed here (hysteresis) was systematically reported in previous
experiments (see Watanabe et al., 2002a).
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The presence of a hysteresis loop at the onset of flutter was recently attributed to wake memory effects (see Zhang et al.,
2000; Tang and Païdoussis, 2007; Alben and Shelley, 2008; Michelin et al., 2008), structural damping (Alben and Shelley,
2008) and flatness defects (see Tang and Païdoussis, 2007; Eloy et al., 2008, 2012).

The evolution of Ucf and Ucr in our experiments is shown in Fig. 5, where we observe a discontinuity at MnC1:5. This
discontinuity is well documented for flags (see Yamaguchi et al., 2000a,b; Eloy et al., 2007) and also appears in vertical
ribbons (Lemaitre et al., 2005) and in fluid conveying pipes (Doaré and de Langre, 2002). In all these works, a global stability
analysis of the flag – i.e. taking into account boundary conditions – in an inviscid flow is sufficient to catch the discontinuity.

3.3. Unsteady fluid forces at the critical rest velocity (Ucr)

Unsteady drag force and moment around the flagpole are measured along the boundary of instability. We focus on forces
at critical rest velocity Ucr which are apparently less dependent on flatness defects and thus more repeatable than at critical
flutter velocity Ucf. Results reported in Fig. 6(a) and (b) show that the evolution of unsteady fluid forces with flag length L
follows a trend similar to the one of the critical rest velocities Ucr (Fig. 5). A huge discontinuity is observed at MnC1:5 and
standard deviations of drag force and moment around the flagpole decrease with flag length before and beyond the
discontinuity.

3.4. Mode switches (type 1)

Global stability analysis and experiments of Eloy et al. (2008) have recently highlighted that the discontinuity in Fig. 5 is
related to a switch of flutter mode. We looked for this flutter mode switch by using a high-speed video camera. Snapshot
superimpositions are presented in Fig. 7 for MnC0:69;1:49;1:59 and 2.84 (the corresponding parameters are reported in
Table 1). Necks are defined by regions where flapping amplitudes are locally smaller, by analogy with vibration nodes of
excited strings. We clearly see a modification of the number of necks in the envelope of flutter mode. One neck of vibration
is visible for 0:7≲Mn≲1:5, as in Fig. 7(α) and (β); this regime is called regime (I). Two necks are visible when 1:5≲Mn≲2:8, as
in Fig. 7(γ) and (δ); this regime is called regime (II). Note that necks are less visible in Fig. 7(δ), where the flag sustains a
gentle axial twist due to gravity.



Fig. 7. Snapshot superimpositions (envelopes) in the situation of flags fluttering at the critical rest velocity (defined in Fig. 5), showing the transition from
the one-neck regime to the two-neck regime; see also Table 1.

Table 1
Selection of four flags fluttering at the critical rest velocity; Greek letters refer to figure panels (Fig. 7).

Designation Fig. 7(α) Fig. 7(β) Fig. 7(γ) Fig. 7(δ)

L (mm)/Mn/Hn 70/0.69/1.43 150/1.49/0.67 160/1.59/0.63 286/2.84/0.35
Ucr (m/s)/Un

cr 14.1/8.3 8.7/11.0 12.7/17.1 5.6/13.5
f (Hz) 57 17 32 9.5
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Envelopes observed in Fig. 7 are similar to the ones observed experimentally by Eloy et al. (2008), and they are also
consistent with modifications of envelopes predicted by varying mass ratio (see Huang, 1995; Tang and Païdoussis, 2007;
Michelin et al., 2008; Michelin and Llewellyn Smith, 2010; Huang and Zhang, 2013).

3.5. Flapping amplitude

Flapping amplitude (peak-to-peak) of the flag trailing edge is reported in Fig. 8. It is almost constant (2AC30 mm) in
regime (I) and also in regime (II) (2AC100 mm). Thus, it does not explain the decrease of unsteady fluid forces in regimes (I)
and (II) observed in Fig. 6. On the other hand, we observe that the flutter mode switch is associated with a strong increase of
flapping amplitude (�3:3) which amplifies the discontinuity of unsteady drag and moment around the flagpole at MnC1:5.

3.6. Frequency analysis

Evolutions of power spectral densities are shown in Fig. 9(c) and (d). In these figures, each vertical slice is a power
spectral density similar to the illustrative example given in Fig. 4, Section 2.4. Power spectral densities display sharp peaks
(dark color) which indicate a highly periodic flapping. On the other hand, the presence of subharmonics in the power
spectral density of unsteady drag indicates that the flapping is not perfectly symmetric in our experiments. At Mn ¼ 1:5, the
flutter mode switch is associated with a frequency switch visible on power spectral densities: this is consistent with
Watanabe's theoretical work (see also Gibbs et al., 2012).

From this section, we can conclude that the discontinuity of unsteady fluid forces which occurs along the boundary of
instability at MnC1:5 corresponds to a transition from the one-neck to the two-neck flutter mode.

4. Unsteady fluid force evolution with wind velocity

The previous section was devoted to the examination of unsteady fluid forces at the boundary of flutter instability.
Beyond this boundary, the flag motion is determined by strong structural and fluid non-linearities induced by large
deformations. As recently highlighted by Eloy et al. (2012), non-linear dynamics of flags are still obscure. In this context, the
present section is devoted to the evolution of unsteady drag force and moment in post-critical conditions and to the
corresponding flag dynamics observed.

4.1. Post-critical flutter

Three flags from Section 2 were studied. One flag was selected in the regime (I) of Fig. 5 (one-neck flutter), with a mass
ratio Mn ¼ 1:39 (Flag 1). This flag has a relatively low critical rest velocity which allows the study of its flutter in a wider
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Fig. 9. Evolution of power spectral densities at the critical rest velocity (defined in Fig. 5): (a) unsteady drag force; (b) unsteady moment; the color scale is
logarithmic in mN2/Hz and mN2 m2/Hz, respectively. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this article.)

Table 2
Selection of three flags for wind velocity dependence tests.

Designation Flag 1 Flag 2 Flag 3

L (mm)/Mn/Hn 140/1.39/0:71 250/2.48/0:40 286/2.84/0:35
U (m/s)/Un 7.2–17.9/8.5–21.1 3.8–13.7/8.0–28.9 3.2–12.3/7.6–29.6

Ucf1 (m/s)/Un

cf1 10.1/11.9 – –

Ucf2 (m/s)/Un

cf2 15.0/17.7 9.0/18.9 6.4/15.4

Ucf3 (m/s)/Un

cf3 16.7/19.7 11.4/24.0 10.1/24.3

Ucf4 (m/s)/Un

cf4 – 12.6/26.5 10.9/26.2
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range of wind velocities in the wind tunnel. Two other flags were selected in the regime (II) of Fig. 5 (two-neck flutter) with
Mn ¼ 2:48 (Flag 2) and Mn ¼ 2:84 (Flag 3). Both have relatively low critical rest velocity and Flag 3 corresponds to the longest
flag that can be studied in the wind tunnel. Parameters associated with these flags are reported in Table 2. For each flag,
wind tunnel tests were done for a wind velocity increasing up to the velocity for which the flag tears, as done by Watanabe
et al. (2002a). Standard deviations of unsteady drag force (sD) and unsteady moment around the flagpole (sM) are presented
in Fig. 10.

The first set of experiments was conducted with Flag 1 (Fig. 10(a) and (b)). At U ¼ 10.1 m/s, this is the onset of flutter and
we observe a discontinuity of sD and sM followed by a gentle increase. There is a strong and sharp increase of sM at U ¼
15.0 m/s. A sharp increase in sD was also observed at U ¼ 15.0 m/s, but due to the proximity between the flapping frequency
and the cut-off frequency of our measurement system (60 Hz) these flawed data are removed. Another experiment was
performed with the same flag (empty circles in Fig. 10). On the one hand, we can notice that the critical velocity is
significantly higher for the second test. This discrepancy is attributed to flatness defects almost impossible to avoid in
practice (Eloy et al., 2012). On the other hand, comparable levels of forces are found when the flag flutters.
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Fig. 10. Evolution of unsteady drag force and moment around the flagpole, characterized by their standard deviations, when the wind velocity is increased:
(a, b) Flag 1; (c, d) Flag 2; (e, f) Flag 3; empty symbols correspond to repeatability tests; regimes (I), (II), (III) and (IV) are defined in Section 4.2; see also
Table 2.
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The second set of experiments was conducted on Flag 2 (Fig. 10(c) and (d)). Beyond the critical flutter velocity U ¼ 9.0 m/s,
we observe that sD increases with the wind velocity for Ur11:4 m=s, and then slightly decreases. Above U ¼ 12 m/s, data are
flawed and removed (cut-off frequency). In the same time and after a strong discontinuity at U ¼ 9.0 m/s, sM decreases slowly
for Ur11:4 m=s, remains almost constant for 11:4rUr12:6 m=s and then increases for UZ12:6 m=s. Two other
experiments were performed with the same flag (empty circles and squares in Fig. 10), and comparable evolutions and levels
of forces are obtained.

The third set of experiments was conducted on Flag 3 (Fig. 10(e) and (f)). Beyond the critical flutter velocity U ¼ 6.4 m/s,
we observe a discontinuity followed by a gentle increase of sD for Ur8 m=s. Then, sD slowly decreases for Ur10:1 m=s,
and then strongly increases. In parallel and after a strong jump at U ¼ 6.4 m/s, sM is slowly decreasing for Ur10:1 m=s, and
then it increases. Three other experiments were performed with the same flag (empty circles, squares and triangles in
Fig. 10), and comparable evolutions and levels of forces are obtained as well.

Unsurprisingly, unsteady fluid forces are very low when the flag is not fluttering (regimes called (stable) in Fig. 10):
sDr1 mN and sDr0:1 mN m.

The next parts of the present section will discuss the evolution of unsteady fluid forces (Fig. 10) by reporting the presence
of mode switches and by analyzing flapping amplitudes and power spectral densities (flapping frequencies).

4.2. Mode switches (type 2)

Flutter mode switches due to an increase of wind velocity (at a given mass ratio Mn) were photographed and examined
for the first time by Taneda (1968) on vertical flags, they were highlighted in recent experiments (see Eloy et al., 2008;
Gomes and Lienhart, 2013), and they were predicted numerically as well (see Fitt and Pope, 2001; Yadykin et al., 2001;
Connell and Yue, 2007; Alben and Shelley, 2008; Michelin et al., 2008). In practice, the fast motion of flags blurs visual
observation and prevents a simple visual detection of flutter mode switches. However, by using a high-speed video camera



Table 3
Wind velocities applied to Flag1; Greek letters refer to figure panels (Fig. 11).

Designation Fig. 11(α) Fig. 11(β) Fig. 11(γ) Fig. 11(δ) Fig. 11(ε) Fig. 11(ζ)

U (m/s)/Un 9.2/10.9 11.5/13.6 14.9/17.6 15.0/17.7 16.9/20.0 17.3/20.4
f (Hz) 0 23 30 32 58 57

Fig. 11. Snapshot superimpositions (envelopes) of Flag 1 showing the onset of one- two- and three-neck flutter mode, followed by a loss of periodicity;
see Table 3.
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in the situation of Flag 1, Flag 2 and Flag 3, flutter modes can be easily detected because they are characterized by a constant
number of necks. This is not surprising that each flutter mode has a given number of necks: by using the Galerkin method
we can show that flutter modes correspond to specific projections on in vacuo cantilever beam modes (see Howell et al.,
2009; Huang and Zhang, 2013).

We can thus define regimes (I), (II), (III) and (IV), the one-, two-, three-, and four-neck flutter regime along with Ucf1, Ucf2,
Ucf3 and Ucf4, the wind velocity for the onset of each regime (see Table 2). In snapshot superimpositions of Fig. 11 the
successive flutter mode switches for Flag 1 can be appreciated. When the wind velocity increases, one-neck flutter (Fig. 11(β)
and (γ)) is succeeded by two-neck flutter (Fig. 11(δ)) and three-neck flutter (Fig. 11(ε)). The last regime before tear (Fig. 11(ζ))
is characterized by a succession of quasi-periodic and “chaotic” oscillations, and the flag undergoes snapping events: this
will be discussed in Section 4.6.

For both Flag 2 and Flag 3, high-speed video analysis suggests that the two-neck flutter regime – which comes beyond
the critical flutter velocity – is succeeded by three-neck flutter and four-neck flutter (not shown).

4.3. Flapping amplitude

The evolution of flapping amplitude for Flag 1 is reported in Fig. 12. When increasing the wind velocity above the onset of
flutter, the flapping amplitude first increases and reaches almost a constant value 2AC60 mm for 12≲U≲14 m=s. When
U≳14 m=s, the reduction of flapping amplitude reflects the change of envelope before the onset of two-neck flutter, as
observed when Fig. 11(β) is compared to Fig. 11(γ). After the onset of the two-neck regime (Fig. 11(δ)), the flapping amplitude
suddenly reaches 2AC80 mm and increases again for higher wind velocity.

Flapping amplitudes of Flag 2 and Flag 3 are reported in Fig. 13(a) and (b), respectively. For both flags the onset of flutter
(two-neck regime) is characterized by high flapping amplitudes 2AZ150 mm. When increasing the wind velocity, the
flapping amplitude remains constant for Flag 2 until the switch to the three-neck flutter regime where it slightly decreases.
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Then, it increases again in the four-neck regime. For Flag 3, we can notice a small bump of flapping amplitude at UC7:5 m=s
which is associated with the change of envelope before the onset of the three-neck regime.

Note that flapping amplitudes of Flag 2 and Flag 3 are closed to the wind tunnel width (240 mm), and thus a
deterioration of vortical dynamics is possible (see Tang and Païdoussis, 2007). Data for Flag 2 and Flag 3 have thus to be
taken with caution.

4.4. Frequency analysis

To better understand the evolution of unsteady fluid forces (Fig. 10), we analyze the evolution of their power spectral
densities when increasing the wind velocity. Results for Flag 1 are reported in Fig. 14(a) (unsteady drag) and in Fig. 14(b)
(unsteady moment around the flagpole). In Fig. 14(a) we observe a dominant frequency which grows almost linearly from
40 Hz, and a subharmonic frequency which suggests that the flapping is not perfectly symmetric. In Fig. 14(b), the dominant
frequency grows from 20 Hz, and is shifted upward at U ¼ 15.0 m/s (transition from the one-neck to the two-neck regime)
and also at U ¼ 16.7 m/s (transition from the two-neck to the three-neck regime). Unsurprisingly, the dominant frequency
of the moment around the flagpole (in Fig. 14(b)) was always equal to the flapping frequency observed with a high-speed
video camera. Once two-neck flutter is established at U ¼ 15.0 m/s, we observe a loss of periodicity in Fig. 14(b), where the
power spectral density spreads.

In the situation of Flag 2 and Flag 3, in Fig. 14(c–f), dominant frequencies are not strongly shifted, but the period of
“hesitation” between two-neck flutter and three-neck flutter is striking on power spectral densities, where we observe a
“gap” of dominant frequency, respectively, at U ¼ 11.4 m/s and at U ¼ 10.1 m/s. Despite appearance, the flag is still flapping
during this “gap”. From Fig. 14(e), we note that the small decrease of sD at UC8 m=s in Fig. 10(e) is partly due to the cut-off
frequency 60 Hz applied on the fourth harmonics (artefact).

The motion of the flags is less and less periodic after the first mode switch, where power spectral densities start to
spread. This illustrates the non-linear nature of flag dynamics at high wind velocities. The underlying mechanism of flutter
mode switches is presumably different from one of the switches induced by mass ratio variations in Section 3 (essentially
linear).



Fig. 14. Evolution of power spectral densities of unsteady drag force and moment around the flagpole, when the wind velocity is increased: (a, b) Flag 1;
(c, d) Flag 2; (e, f) Flag 3; the color scale is logarithmic in mN2/Hz and mN2 m2/Hz, respectively; see also Table 2. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this article.)
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In the example proposed in Fig. 4, Section 2.4, we have discussed the fact that the dominant frequency of unsteady drag
force is twice the dominant frequency of unsteady moment around the flagpole. More precisely, we observe here that the
power spectral density of unsteady moment around the flagpole has always dominant odd frequencies (1� f , 3� f , 5� f , …)
whereas the power spectral density of the unsteady drag force has always dominant even harmonics (2� f , 4� f , …). This is
consistent with the symmetry of flapping, as in the theoretical study of Michelin et al. (2008), where the flag
tail orientation spectrum has dominant odd harmonics whereas the total energy spectrum contains dominant even harmonics.

Some other features are observed on power spectral densities, but would require further investigation, such as the
apparent coalescent frequencies in the range UC10–15 m=s in Fig. 14(b), or before the onset of flutter in the range
UC4–6 m=s in Fig. 14(f).
4.5. Note on the reduced frequency

It is instructive to compare the time-scale ratio of the fluid passing along the flag (¼L/U) to the flapping period (¼1/f).
This defines the reduced frequency f n ¼ fL=U.

The evolution of reduced frequency with wind velocity is presented in Fig. 15. The range of reduced frequencies
measured f n ¼ 0:2–0:6 is fairly close to 1, suggesting a strong coupling between the flag and the fluid (a significant time-
delay of the fluid response is likely).

We observe that fn is almost constant in each flutter mode. Indeed, dominant frequencies increase linearly with the wind
velocity in each flutter regime, as shown in Fig. 14. This linearity between flapping frequency and wind velocity was
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Fig. 15. Evolution of the reduced frequency when the wind velocity is increased (data from Fig. 14): Flag 1 ð○Þ, Flag 2 (□), Flag 3 (▵); see also Table 2.
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evidenced long ago in experiments performed by Taneda (1968) and Uno (1973). Recently, this was confirmed for flags
fluttering in flowing water, for a mass ratio MnC3� 104 (Shelley et al., 2005). This linearity is also well predicted by an
elementary local analysis at fixed mass ratio (see Coene, 1992; Triantafyllou, 1992; Connell and Yue, 2007): the reduced
frequency fn is a constant of wind velocity, and the value of the constant depends only on the flutter mode (see also the non-
linear analyzes done by Tang et al., 2003; Tang and Païdoussis, 2007; Michelin and Doaré, 2013). Accordingly, we observe a
reduced frequency staircase-shaped in Fig. 15.

4.6. Note on the loss of periodicity and snapping events

By comparing Fig. 14 to Fig. 10, we observe that unsteady fluid forces are stronger when the flapping is no more periodic,
that is to say approximately after the first flutter mode switch. The loss of periodicity was initially observed by Taneda
(1968) who noted that “[…] the oscillation becomes violent and irregular. […]”. This is also widely predicted (see Yadykin
et al., 2001; Connell and Yue, 2007; Alben and Shelley, 2008; Michelin et al., 2008; Huang and Sung, 2010), and recently Eloy
et al. (2012) suggested that the loss of periodicity arises from a non-linear interaction between two modes of comparable
frequency. Both experimental and numerical studies report systematically three regimes when increasing the wind velocity:
stability, periodic flapping, and finally chaotic flapping (see the recent experiments of Zhao et al., 2012; Ait Abderrahmane
et al., 2012). This is actually common that flexible structures which undergo a large excitation exacerbates chaotic
properties, as observed in the context of musical instruments (Touzé et al., 2012). However, regimes observed at the highest
wind velocities of our experiments still have a dominant frequency (see Fig. 14): the periodicity is just strongly reduced by
spread of frequencies around the dominant frequency.

When the periodicity is lost, we have detected the presence of several snapping events, that is to say fast and large
accelerations of the flag trailing edge. For the Flag 3 and according to the power spectral densities of Fig. 14(e) and (f), a loss
of periodicity is expected for U≳10:1 m=s. To illustrate this situation, unsteady fluid force signals and their associated power
spectral densities are presented in Fig. 16 for U ¼ 12:3 m=s. The unsteady drag force signal is characterized by sD ¼ 180 mN,
meaning that maxima would be

ffiffiffi
2

p
� sD ¼ 250 mN in the ideal harmonic case. Instead, in some short intervals of the order

of 10 ms, unsteady drag force reaches more than 3 times the ideal value (Z800 mN). In parallel, the unsteady moment
around the flagpole is smaller than sM ¼ 2:7 mN m during the flapping event, as shown in Fig. 16(b). This suggests that
snapping events are essentially longitudinal accelerations. These violent accelerations are probably at the origin of the
flag tear.

5. Drag coefficients of flags

In this last section, we report measurements of time-averaged drag coefficients. They are discussed in the light of the
analysis of unsteady fluid forces. A comparison with previously reported drag coefficients is done.

5.1. Time-averaged drag coefficient

Time-averaged drag forces were measured in the same wind tunnel by using a force measurement system based on
strain gauges. Results are presented in the usual form of aerodynamic coefficients:

〈CD〉¼
〈DðtÞ〉
1
2ρaU

2S
; ð4Þ

where the surface S is chosen to be the flag width � the flag length (S ¼ HL). This convention was used by Fairthorne (1930)
and by most works on drag of flags after his contribution.

The evolution of 〈CD〉 at the onset of flutter when the flag length is varied is shown in Fig. 17(a). As for the unsteady drag
force in Fig. 6(a), Section 3.2, we still observe an increase of 〈CD〉 when Mn ¼ 1:5 is crossed. This is associated with the flutter



Fig. 16. Snapping events for Flag 3 fluttering at a wind velocity U ¼ 12.3 m/s: (a) selection of 200 ms from unsteady drag force; full temporal signal in the
inset (14 s); (b) unsteady moment around the flagpole; (c, d) respective power spectral densities of full temporal signals, in logarithmic scale.
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mode switch. For each flutter mode, a gentle decrease is visible, as in experiments of Carruthers and Filippone (2005) and
Wilk and Skuta (2009).

When increasing the wind velocity, we measured the evolution of 〈CD〉 for Flag 1, Flag 2 and Flag 3. This is reported in
Fig. 17(b).

In the situation of Flag 3 (empty triangles in Fig. 17(b)), we observe that 〈CD〉 first increases from 〈CD〉C0:15 at UC1:05�
Ucr up to 〈CD〉C0:3 at UC1:4� Ucr . Then, it decreases slowly and asymptotically tends toward 〈CD〉C0:22. So the evolution
of 〈CD〉 of Flag 3 has a small bump close to the onset of flutter, which was also reported by Morris-Thomas and Steen (2009).
The bump of 〈CD〉 corresponds approximately to the bump of flapping amplitude of Flag 3 in Fig. 13(b), Section 4.3. In the
situation of Flag 1 and Flag 2, results are presented in a short wind velocity range 1:1–1:4� Ucr . Beyond, data are flawed
because of a strong coupling with the measurement system when the flapping frequency crosses 25 Hz. When Flag 2 and
Flag 3 are fluttering in the two-neck regime, 〈CD〉 is almost 3 times larger than for Flag 1 fluttering in the one-neck regime, in
the same range of wind velocities.
5.2. Unsteady drag coefficient

We can define similarly the unsteady drag coefficient sðCDÞ by

sðCDÞ ¼
sD

1
2ρaU

2S
with S¼HL: ð5Þ
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Table 4
Comparison of time-averaged and unsteady drag coefficients at UC1:4� Ucr .

Flag Present work Fairthorne (1930) Moretti (2003) Connell (2006)

〈CD〉 sðCDÞ 〈CFai:
D 〉 〈CMor:

D 〉 sðCMor:
D Þ 〈CCon:

D 〉 sðCCon:
D Þ

1 0.09 0.027 0.52 0.05 0.004 0.47 0.36
2 0.27 0.021 0.25 0.22 0.031 0.29 0.18
3 0.30 0.049 0.21 0.14 0.020 0.25 0.14
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The evolution of sðCDÞ with the flag length is shown in Fig. 18(a) with data from Section 3. We still notice a strong
discontinuity due to the flutter mode switch at MnC1:5 and a decreasing trend in each flutter regime. We can appreciate
the evolutions of sðCDÞ for Flag 1, Flag 2 and Flag 3 when increasing wind velocity in Fig. 18(b) (data from Section 4). The
values of sðCDÞ have also a bump whose maximum is located at approximately 1:4� Ucr for Flag 1 and Flag 2, and at
1:6� Ucr for Flag 3. This fairly corresponds to the maxima of flapping amplitudes reported in Section 4.3. In the situation of
Flag 3, we note that sðCDÞ increases strongly above 1:8� Ucr , that is to say the point where we have detected a loss of
periodicity in Section 4.4.

It is instructive to compare sðCDÞ to 〈CD〉 in the situation of Flag 3, in order to get a relative measure of the drag
unsteadiness. The ratio sðCDÞ / 〈CD〉 is typically 10% below 1:8� Ucr , with a maximum 15% at the top of the bump at 1:4� Ucr .
Instead, it reaches 26% in the regime where a loss of periodicity was reported, i.e. above 1:8� Ucr .

5.3. Discussion

Some quantitative estimations for time-averaged drag coefficients 〈CD〉 are present among previous studies. Fairthorne
(1930) provided an empirical formula, based on its own experiments on 13 flags, for mass ratio in the range MnC4:3–97
and at a constant wind velocity U ¼ 30.5 m/s. The skin friction drag contribution being negligible in our case, the Fairthorne
formula 〈CFai:

D 〉 can be simplified as follows:

〈CFai:
D 〉C0:78

ðHnÞ0:25
Mn

: ð6Þ

This expression does not take into account the wind velocity, but strongly depends on mass ratio. Values of 〈CFai:
D 〉

corresponding to Flag 1, Flag 2 and Flag 3 are reported in Table 4, where they are compared with our measurements at
UC1:4� Ucr . In the situation of Flag 3, it gives 〈CFai:

D 〉¼ 0:21 which is significantly lower than the value 〈CD〉C0:30 reported
at UC1:4� Ucr , but it is in very good agreement with the asymptotic value 〈CD〉C0:22 reported in Fig. 17(b). In the situation
of Flag 1, we measured 〈CD〉C0:09, much lower than 〈CFai:

D 〉C0:52, but an increase of 〈CD〉 is expected with the flutter mode
switch from the one-neck regime to the two-neck regime, as observed with unsteady drag force measurements. Finally, our
data suggest that the Fairthorne formula is not applicable at the onset of flutter, but that formula is reasonable for high wind
velocities, typically above 1:8� Ucr for Flag 3. This is consistent with the fact that the Fairthorne formula was established for
large mass ratios MnZ4:3 and with a relatively high wind velocity (¼ 30:5 m=s).

More recently, Moretti (2003) adapted the work of Thoma (1939a,b) to suggest an estimation of flag tension from the loss
of kinetic energy at the trailing edge. This model neglects the flexural rigidity of the flag. In our case for which λ=Lo2, where
λ is the characteristic wavelength along the flag (classically λ=LC0:75 for a one-neck flutter), the model can be simplified:

〈CMor:
D 〉¼ 2π2

Mn

fA
U

� �2

; sðCMor:
D ÞC πffiffiffi

2
p

Mn

fA
U

� �2λ

L
; ð7Þ
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where the ratio between the typical transverse velocity of the flag trailing edge (¼ fA) and the oncoming wind velocity
(¼U) depends strongly on the flutter mode. This elementary model was recently validated by experiments with a mass
ratio Mn ¼ 0:53 (Martin, 2006). When compared to our measurements (Table 4), we notice that it predicts the good order of
magnitude except for Flag 1.

From recent numerical simulations at Reo5� 103, Connell (2006) obtained a fit for both time-averaged and unsteady
drag coefficients for mass ratios MnZ1. In our case, this can be approximated as follows:

〈CCon:
D 〉C

0:8
Mn

1� 2π
Un

� �2
 !

; sðCCon:
D ÞC 1:5

ðMnÞ1:5
1� 2π

Un

� �2
 !1:5

; ð8Þ

where terms depending on the wind velocity can be neglected for sufficiently high wind velocities. The analytic expression
〈CCon:

D 〉 is very close to the analytic expression 〈CFai:
D 〉, and thus gives similar results. Nevertheless, the estimation of sðCCon:

D Þ is
one order of magnitude higher than sðCDÞ that we have measured. Moreover, the scaling relationship observed in Fig. 18(a)
is sðCDÞ � ðMnÞ�2:0 in each flutter regime, substantially different from sðCMor:

D Þ � ðMnÞ�1 or sðCCon:
D Þ � ðMnÞ�1:5.

This quick comparison suggests that further experimental, theoretical and numerical investigations on unsteady forces
acting on a flagpole would be beneficial for drawing a complete picture of flag dynamics.

6. Summary

In this paper, unsteady fluid force measurements on flags fluttering in a wind tunnel have been discussed. At the onset of
flutter, we have observed that both unsteady drag force and unsteady moment around the flagpole decrease when the flag
length is increased, with a strong discontinuity for a mass ratio MnC1:5. We have shown that this discontinuity is
associated with a flutter mode switch from the one-neck regime to the two-neck regime. We have also shown that the
flutter mode switch induces a doubling of time-averaged drag coefficient and a tripling of unsteady drag coefficient.

When the wind velocity is increased above the critical flutter velocity, we have observed various evolutions of unsteady
fluid forces according to the flags considered, but all of them are characterized by a reduced frequency staircase-shaped, i.e.
constant for each flutter mode. A bump of time-averaged and unsteady drag coefficients has been detected and has been
correlated to a modification of the envelope of flutter mode. For sufficiently high wind velocities, we have shown that the
loss of periodicity is correlated with a strong increase of unsteady fluid forces, leading ultimately to a tear of the flag.
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