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Abstract

In the context of energy harvesting we address the coupling between a flexible flag and its flagpole equipped so that it

constitutes a spring-mass oscillator. An extensive set of experiments is carried out in wind tunnel for various flag and

oscillator parameters. Results are analyzed in terms of frequency and amplitude of rotation of the flagpole. We report

numerous configurations of coupling by frequency lock-in leading to resonance conditions. In the case of strong

coupling, high amplitudes of rotation of the flagpole are reported, up to 75o peak-to-peak, over a large range of wind

velocities. We also propose to characterize the strength of the coupling with a dimensionless rigidity B̃, which can be

considered as the ratio of the flag bending rigidity to the stiffness of the oscillator.
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1. Introduction

Harvesting energy from flapping flags is an idea that has been intensively considered during the last decade. Two

mechanisms are generally proposed for the excitation of the flag: either an external forcing by an unsteady flow,

such as the wake of a bluff body (Allen & Smits, 2001; Taylor et al., 2001), or an intrinsic forcing by a steady flow

destabilizing the flag by flutter (Tang et al., 2009). Two technical strategies for harvesting electric energy have also

been described in previous works, either distributed or localised. On the one hand, the deformation of the flag can be

used, for instance by covering the flag surface with piezoelectric patches, as in the recent experimental and numerical

studies by Doaré & Michelin (2011) ; Dunnmon et al. (2011); Giacomello & Porfiri (2011); Singh et al. (2012);

Akcabay & Young (2012); Michelin & Doaré (2013); Xia et al. (2015), On the other hand, the displacement of the

flag can be used, then taking advantage of electromagnetic induction or triboelectricity as in the recent experimental

and numerical studies by Gibbs et al. (2012); Stone et al. (2013); Howell & Lucey (2014); Bae et al. (2014).

A key point is that energy transfers are favoured in the situation of resonance. More precisely, it has been shown

numerically that there is a strong increase in the efficiency of the harvesting in the presence of a frequency lock-in,

in the context of the coupling between a piezoelectric flag and an electrical oscillator (resistance-inductance) studied

by Xia et al. (2015). Moreover, in the context of vortex-induced vibrations, the frequency lock-in between the wake
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Figure 1: Experimental set-up. (a) Schematic representation of the experiment. The flagpole is attached to a spring-mass oscillator, which is out of

wind-tunnel. A laser sensor measures the angle of rotation θ of the rotating inertia bar fixed to the flagpole. (b,c) Photographs of the experimental

set-up (here the whole system is out of wind-tunnel), where it can be seen that the flagpole is guided by ball bearings.

vortices and a cylinder-oscillator is essential (Khalak & Williamson, 1999; Williamson & Govardhan, 2004) and is

already concretely used for harvesting energy from water currents (see Bernitsas et al., 2008). By comparison with

systems based on flapping flags, a wake of vortex can be seen as the analogue of a flag. Both exert a periodic forcing

on the oscillator, which can be significantly enhanced by the oscillator motion in the lock-in region.

In this article, we focus on the intrinsic flutter instability of flags and we trigger frequency lock-in conditions

between flapping flags and oscillating flagpoles, while varying the parameters of the flag and oscillator. Results are

analyzed in terms of frequency and amplitude of rotation of the flagpole.

2. Experiments

2.1. Experimental set-up

An Eiffel-type wind tunnel is used with wind velocities ranging from 3 to 20 m s−1 at a low turbulence level (0.4%

over this velocity range). The wind tunnel has a rectangular test-section: width × height = 260 mm × 240 mm. The

flag is clamped inside of a flagpole of thickness 4 mm and height 140 mm. In our experiments, the Reynolds number

based on the flag length (L) falls in the range ReL = 1 × 104 − 4 × 105.

The flagpole is not clamped in the wind tunnel. Rather, it is guided by two ball bearings, Fig. 1, making it free to

rotate. An inertia bar and a set of linear springs are attached to the flagpole to modelize an elementary spring-mass

oscillator.

The instantaneous amplitude of rotation of the flagpole is characterized by the rotation angle θ(t) between the

inertia bar and the normal to the wind, Fig. 1(a). Since the flag is clamped to a rigid flagpole, the angle θ(t) is also

the rotation angle of the leading edge of the flag. It is measured with a laser sensor recording 1024 acquisitions per

second with an error lower than 1 % in the range of angle from −60o to 60o. In this paper, the fluctuations of θ(t) are

2



reported with the standard deviation σθ =
√< θ2 > − < θ >2. The acquisition duration is 24 s, which is sufficient to

record more that 100 flapping periods. Concerning the frequency analysis, noise is reduced by treating independently

blocks of 8 s (with an overlap: 50%); the resulting frequency resolution is then 1/8 Hz.

2.2. Characteristics of the flag and spring-mass oscillator

The flapping frequency of flags must be sufficiently low to be coupled with the (low frequency) spring-mass

oscillators, whose natural frequency can be varied between 1 Hz and 20 Hz. We used paper sheets (120 g m−2,

thickness d = 153 µm) and steel sheets (thickness d = 54, 77 or 103 µm). The mass densities of these sheets are

respectively ρs = 790, 7290, 7620 and 7680 kg m−3. The width of the flags is unchanged (H = 100 mm), while the

flag length is varied in the range L = 60 − 300 mm. The size of the flags is chosen to limit blockage effect in the wind

tunnel.

We have used two inertia bars, depending on the natural frequency needed: a thick aluminium bar and a thin

carbon fiber bar. The moment of inertia Josc of the system with the aluminium bar is 1.7 × 10−4 kg m2, whereas it is

9.2 × 10−5 kg m2 with the carbon fiber bar. In practice, the carbon fiber bar is quite unique to be both rigid and light

(Ashby, 2000). Indeed, we pay a particular attention to the fact that a flexible inertia bar could interact with the flag.

Here the bending rigidity of the bar is always 100 times larger than the stiffness of springs. If the natural frequency

of the oscillator needs to be precisely adjusted, then additional masses may be placed along the inertia bar, allowing a

variation of the inertia moment Josc between 9.2 × 10−5 kg m2 and 8.4 × 10−4 kg m2.

We used linear spring with stiffness in the range 0.05−0.28 N mm−1, leading to stiffness in rotation varying in the

range Cosc = 0.28 − 2.3 N m rad−1. For keeping the symmetry of the system, a particular attention is devoted to place

identical springs in parallel, at the same distance from the axis of rotation.

The mechanical oscillator attached to the flagpole is irremediably damped. After a small perturbation of the system

without flag, the exponential decrease of the rotation angle that we observed suggests that the damping is essentially

viscous (Landau 1976, p75). The damping is therefore expressed by a dimensionless damping ratio ζ∗osc (Landau

1976), which is measured by adjusting a law −log(θ)/ωosc ∼ ζ∗osct on the envelope of the temporal decrease of an

impulse response. In this expression, the natural pulsation is defined classically: ωosc =
√

Cosc/Josc = 2π fosc.

Five independent free decay tests have been systematically carried out for each set of parameters of the oscillator.

Results have shown that the damping ratio is constant ζ∗osc ≃ 0.014 in our experiments, except for the system of section

2.3 where ζ∗osc ≃ 0.005.

2.3. A concrete example of frequency lock-in with a paper flag

Let us illustrate the “frequency lock-in” between a flag and an oscillator with a first concrete example. Tests have

been done with a paper flag (120 g m−2) of length L = 286 mm and width H = 100 mm.

In a clamped flagpole configuration, the flapping frequency evolution is shown in Fig. 2(a) as a function of the

wind velocity, where we report the power spectral densities of the flapping moment measured in Virot et al. (2013).
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Figure 2: Detection of the frequency lock-in by using power spectral densities reported vertically with a logarithmic colorbar (case of a paper flag).

(a) Power spectral densities of the flapping moment of a flag with clamped flagpole (our reference case). We observe a dominant frequency, which

increases linearly with wind velocity U. (b) Power spectral densities of θ(t), in the case of a coupling flag-oscillator. The natural frequency of the

oscillator fosc ≃ 13.9 Hz is visible in spectra. More particularly, an area of frequency lock-in is visible between U = 8 m s−1 and U = 9 m s−1,

where the flagpole oscillations are more intense (darker) and are even “locked” with the natural frequency fosc.

The wind velocity is kept constant about three minutes before the following increase. A dark color means a dominant

frequency. The flapping frequency of the flag with a clamped flagpole increases almost linearly (from 10 Hz to 20 Hz)

with the wind velocity.

In a coupled flagpole situation, with a flagpole-oscillator of natural frequency fosc ≃ 13.9 Hz we then expect a

resonance for a wind velocity U = 8.6 m s−1. Measurements of θ(t) have been done for wind velocity U in the range

5.0 − 11.0 m s−1, with increments of 0.3 m s−1. The striking effect of the coupling is reported on Fig. 2(b), where we

observe the power spectral densities of θ(t). Between U = 6 m s−1 and U = 8 m s−1, the oscillation frequency of the

flagpole is almost identical to the flapping frequency of the same flag with a clamped flagpole, Fig. 2(a). Nevertheless,

in the range of wind velocity U = 8 − 9 m s−1, the oscillation frequency of the flagpole deviates and remains locked

with the natural frequency of the oscillator ( fosc = 13.9 Hz). Above U = 9 m s−1, we observe a strong modification

of the dominant frequency, which switches to the typical flapping frequency of a clamped flag. This evolution bear

some resemblances with the one recently observed for forced vibrations of flags in soap films (Jia et al., 2015). In

figure 2, it seems that the critical wind velocity of flutter is lower in the case of the coupled flagpole. A more rigorous

estimation of this effect would require further investigations.

The evolution of the standard deviation of the angle of rotation of the flagpole is shown in Fig. 3(a) as a function

of the wind velocity. The measurements obtained with an increasing wind velocity are superimposed with the ones

obtained with a decreasing wind velocity. One can observe a bent-over resonance curve for which the maximum

peak-to-peak angle of rotation is close to 10o. However, if we draw the resonance curve as a function of the flapping

frequency, Fig. 3(b), we obtain a classical linear resonance curve. It suggests that both the bent-over and hysteretic

behaviour can be explained by the frequency lock-in, without any other retroaction of the oscillator on the dynamics
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Figure 3: Evolution of the fluctuations of θ(t), characterized by the standard deviation σθ (case of a paper flag). For each datapoint at a precise

wind velocity, we wait about three minutes before recording, in order to not be affected by any transient signal. (a) We can think of a bent-over

resonance curve when it is plotted as a function of the wind velocity. (b) Nevertheless, we observe a classical resonance curve as a function of the

flapping frequency of the flag. The dotted lines are guides for the eyes.

of the flag. One can call this first configuration a “light coupling”.

2.4. A concrete example of reproducibility with a steel flag

We choose for this second concrete example a more rigid flag and a less stiff spring-mass oscillator (by adding

springs in series). The flag is made of steel, with a thickness d = 54 µm, a length L = 150 mm and a width H = 100 mm.

The spring-mass oscillator has a natural frequency fosc = 8.2 Hz (with Cosc = 0.28 N m rad−1, Josc = 1.0 × 10−4 kg m2

and ζ∗osc = 0.014). In order to assess the reproducibility of the ”frequency lock-in”, we perform three tests in the

same conditions (same flag properties, same oscillator). Results are reported under a normalized form, introducing a

reduced velocity, U/ foscL, a relative frequency, f / fosc, and a relative amplitude of the flag dynamics, 2A/L, where 2A

is the peak-to-peak amplitude of the trailing edge of the flag.

In Fig. 4(a), we report the successive measurements of the standard deviation σθ of the angle of flagpole rota-

tion. The measurements obtained with an increasing wind velocity are superimposed with the ones obtained with a

decreasing wind velocity in order to highlight the hysteresis phenomenon. We report the corresponding dominant

frequencies in Fig. 4(b). We observe that the frequency lock-in phenomenon takes place over a large range of wind

velocities U = 5.1 − 7.2 m s−1 (U/ foscL = 0.09 − 0.13).

An identical value of the maximum of σθ is systematically found (≃ 11.2o with an error 4 %). The extension of

the frequency lock-in (in terms of wind velocities) is conserved as well. However, the critical wind velocity required

to flutter is variable (difference: 10 %). The measurements in Fig. 4(b) also suggest that the coupled configuration

is more unstable to flutter than the clamped one, and from Fig. 4(c) it seems that the flag dynamics can be amplified

during the frequency lock-in. Nevertheless, more detailed studies about these specific points would be necessary to

confirms the trends.
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Figure 4: Analysis of reproducibility (case of a steel flag). Values obtained by gradually increasing the wind velocity are superimposed with

values obtained by gradually decreasing the wind velocity (blue color) and ”test 1”, ”test 2”, ”test 3” denote the independent reproducibility tests

made under the same experimental conditions. (a) Evolution of the standard deviation σθ of the angle of rotation of the flagpole as a function of

the reduced wind velocity. (b) Dominant frequency of the flagpole oscillation. The natural frequency of the oscillator is indicated by the dotted

horizontal line ( fosc = 8.2 Hz). The expected trend of the flapping frequency without lock-in is suggested by the gray dotted line, supported by

experimental data measured at decreasing wind velocity (crosses). (c) Evolution of the amplitude peak-to-peak of the trailing edge of the flag in

the coupled configuration (circles) and clamped (crosses), normalized by the flag length L.

Finally, when we compare the first example (flag made of paper, fosc = 13.9 Hz) to the second example (flag made

of steel, fosc = 8.2 Hz), we clearly see that the maximal angle of rotation strongly vary (here from σmax
θ = 3.8o to 11.2o

in terms of standard deviations) when the parameters of the flag and oscillator are modified. In the following, we thus

study quantitatively the influence of each parameter of the coupling.

3. Frequency lock-in at the threshold of instability

We perform experiments at the threshold of flutter instability in order to characterize the role of the stiffness and

inertia of the oscillator along with the flag parameters. We adjust the natural frequency of the flagpole-oscillator

around the critical flutter frequency of the clamped flag (at the lowest wind velocity where flutter instability can be

observed). Note that this is an arbitrary choice, and that the natural frequency of the flagpole-oscillator could also be

set at much larger values than the critical flutter frequency of the clamped flag, but with a risk of loss of periodicity at

high wind velocities.

3.1. Results

We start by making a series of experiments, increasing equally Cosc and Josc for a fixed value of the frequency fosc

close to 8.4 Hz (Fig. 5(a,b)). For each configuration, frequency lock-in is set close to the threshold of flutter instability

of the flag. The threshold of flutter is estimated in the situation of a clamped flag during preliminary experiments, and

we denote by f clamped
c the flapping frequency of the flag at the lowest wind velocity allowing to sustain the flutter

instability (since flutter is subcritical, this value is obtained by decreasing the wind velocity). The parameters of the

flags and oscillators are reported in table 1. In Fig. 5(a), we report the values of the standard deviation σθ as a function
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Figure 5: Amplitude and frequency of the rotation of the flagpole for several parameters of coupling. The natural frequency of the oscillator is

adjusted to be very slightly above the flapping frequency of the flag at the threshold of flutter instability. Values obtained by gradually increasing

the wind velocity are superimposed with values obtained by gradually decreasing the wind velocity. (a,b) With variations of Cosc and Josc (in the

same proportions). (c,d) With variations of Josc and L. (e,f ) With variations of Cosc and L. (g,h) With variations of d and L.
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set-up Cosc Josc fosc
fosc− f clamped

c

f clamped
c

L d E ρs M∗ B̃ σmax
θ

(N m rad−1) (kg m2) (Hz) (mm) (µm) (N m−2) (kg m−3) (×10−3) (o)

1 0.28 1.0 × 10−4 8.4 2 % 150 54 1.1 × 1011 7290 0.46 3.4 11.2

2 0.32 1.1 × 10−4 8.4 2 % 150 54 1.1 × 1011 7290 0.46 3.0 9.4

3 0.62 2.2 × 10−4 8.4 2 % 150 54 1.1 × 1011 7290 0.46 1.6 10.7

4 0.81 2.9 × 10−4 8.4 2 % 150 54 1.1 × 1011 7290 0.46 1.2 7.5

5 2.3 8.4 × 10−4 8.4 2 % 150 54 1.1 × 1011 7290 0.46 4.2 2.9

6 0.32 3.1 × 10−4 5.0 2 % 190 54 1.1 × 1011 7290 0.58 2.4 6.6

7 0.32 1.8 × 10−4 6.4 3 % 170 54 1.1 × 1011 7290 0.52 2.7 10.0

8 0.32 1.1 × 10−4 8.5 3 % 150 54 1.1 × 1011 7290 0.46 3.0 10.3

9 0.32 9.2 × 10−5 9.2 2 % 141 54 1.1 × 1011 7290 0.43 3.2 10.9

10 0.28 2.2 × 10−4 5.9 3 % 181 54 1.1 × 1011 7290 0.55 2.8 10.5

11 0.32 2.2 × 10−4 6.6 3 % 170 54 1.1 × 1011 7290 0.52 2.7 10.0

12 0.62 2.2 × 10−4 7.7 3 % 153 54 1.1 × 1011 7290 0.47 1.5 11.3

13 0.81 2.2 × 10−4 9.3 2 % 144 54 1.1 × 1011 7290 0.43 1.2 6.7

14 0.28 1.0 × 10−4 8.2 4 % 154 54 1.1 × 1011 7290 0.47 3.3 9.8

15 0.28 1.0 × 10−4 8.2 5 % 205 77 1.3 × 1011 7260 0.44 8.6 18.8

16 0.28 1.0 × 10−4 8.2 3 % 225 103 1.5 × 1011 7680 0.34 22 27.0

Table 1: Characteristics of the set-ups analysed in Fig. 5. In all these experiments, the flag width is fixed H = 100 mm, the material of the

flag is steel, and the damping ratio ζ∗osc = 1.4 × 10−2 is conserved (relative standard deviation ∼ 10 % over more than 30 measurements). In

this table, Cosc and Josc are respectively the stiffness and the moment of inertia of the oscillator, fosc is the natural frequency of the oscillator,

( fosc − f clamped
c )/ f clamped

c characterized the proximity between the threshold of flutter instability and the frequency lock-in (this parameter has

been chosen close to zero in order to trigger the frequency lock-in at low wind velocities), L is the length of the flag, d is the thickness of the flag,

E is the modulus of elasticity of the flag (measured with vibrations of a cantilever beam), ρs is the mass density of the flag and σmax
θ is the maximal

standard deviation of the angle of rotation of the oscillator attached to the flagpole (multiplication of this value by 2
√

2 indicates approximately

the peak-to-peak amplitude). For comparison purposes, we also indicate the value of the mass parameter M∗ of the flags as defined by Eloy et al,

2007.
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of the reduced wind velocity. We observe that the larger the spring stiffness Cosc and the moment of inertia Josc, the

weaker the amplitude of the oscillations of the flagpole. In Fig. 5(b), we report the relative frequency of oscillation

of the flagpole as a function of the reduced wind velocity. It confirms a reduction of the frequency lock-in extension

when the stiffness Cosc and the moment of inertia Josc are increased while keeping fosc constant.

We now vary the moment of inertia of the oscillator Josc (while keeping Cosc constant), and the flag length is

adjusted in order to remain at the threshold of flutter instability (i.e. fosc ≃ f clamped
c ). The corresponding parameters

are reported in table 1. In Fig. 5(c), we report σθ as a function of the reduced wind velocity. During each experiment,

we observe a regular increase of σθ up to a maximum, followed first by a slow decrease and then by a very sharp

decrease. In Fig. 5(d), we report the dominant frequency of oscillation of the flagpole and we note that the maximum

σθ is obtained when the frequency of oscillation of the flagpole is close to the natural frequency of the oscillator. We

also observe that the frequency of oscillation of the flagpole converges towards fosc by lower values, and then displays

a jump, which marks the end of the frequency lock-in. Concerning the amplitude of rotation, one can notice that

increasing the moment of inertia Josc induces a weaker response of the system. At the same time, the extension of

the frequency lock-in does not vary significantly. It is then hard to conclude here on the direct impact of Josc on the

strength of the coupling. Indeed, in Fig. 5(c,d), an increase of Josc is associated with an increase of the length of the

flag and a decrease of the critical flutter velocity.

We now do the same type of experiment by varying the stiffness of the springs and the length of the flag, while

all other parameters are conserved, including the proximity with the threshold of instability. The corresponding

parameters are reported in table 1. In Fig. 5(e), we observe that the larger the stiffness of the springs, the weaker the

oscillations of the spring-mass oscillator. At the same time, we observe in Fig. 5(f ) that the extension of the frequency

lock-in is not impacted a lot in this range of parameters.

Finally, we change drastically the bending rigidity of the flag EI = EHd3/12, by changing the thickness of the

flag d. The corresponding parameters are reported in table 1. In Fig. 5(g), we report the values of σθ as a function

of the wind velocity, for three different thicknesses of steel flags. As before, the length of the flag is adjusted in

order to keep the frequency lock-in at the threshold of flutter instability. This leads to a significant modification of

the critical flutter velocity as well. The results clearly show that the thicker the flag, the larger the oscillations of

the flagpole. Actually, the increase of amplitude for the set-up 16 is so important that the limits of the experimental

set-up are fully reached; the springs are non-linearly stretched/compressed and the flag touches the walls of the wind

tunnel. Concerning the frequency of oscillation, Fig. 5(h), we observe that the extension of the frequency lock-in also

increases as the thickness of the flag increases.

3.2. Discussion

A natural dimensionless number that compares the excitation of the flag to the spring reaction is the ratio of the

bending rigidity of the flag to the stiffness of the springs B̃ = EI/CoscL (because the bending moment of the flag

∼ EI/L enters in competition with the stiffness Cosc). In Fig. 6(a), we report the previous measurements as a function
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Figure 6: Coupling between a flag and a spring-mass oscillator as function of the dimensionless rigidity B̃ = EI/CoscL (within two orders of

magnitude). The horizontal error bar are the cumulative errors on the estimation of the parameter B̃. (a) Evolution of the maximum standard

deviation of the angle of rotation of the flagpole. (b) Evolution of the extension of the frequency lock-in as a function of the dimensionless rigidity

B̃.

of this dimensionless rigidity B̃. We observe an almost linear evolution between log(σmax
θ ) and log(B̃). In Fig. 6(b),

we report the extension of the frequency lock-in as a function of the dimensionless rigidity B̃. The extension of the

frequency lock-in is estimated with (U2 − U1)/U1, where U2 is the wind velocity at which the maximum σmax
θ is

reached and U1 corresponds to the wind velocity when σθ crosses a conventional value 0.4o. We observe that the

extension is also increasing with the dimensionless rigidity B̃.

To conclude, we have reported numerous configurations of coupling by varying the wind velocity, the parameters

of flags and the characteristics of the spring-mass oscillators. All the data seemingly depend on a single parameter

B̃ = EI/CoscL (see also Virot, 2015, for an alternative model). An interesting parallel can then be made with re-

sults obtained in the context of vortex induced vibrations, where the whole dynamics is generally characterized by

the Skop-Griffin parameter, which can be seen as a dimensionless rigidity multiplied by the damping ratio (Skop &

Griffin, 1973; Khalak & Williamson, 1999; Williamson & Govardhan, 2004). Further investigations would be needed

about this parallel, in particular in the context of energy harvesting for which the damping ratio would be a key pa-

rameter. It would also be interesting to highlight the coupling between the flagpole motion and the dynamics of the

flag. Indeed, as for the case of VIV, it seems that the system can benefit a favorable retroaction of the flagpole on the

dynamics of the flag, leading to strong amplitude of oscillation in the lock-in region. The effect of the fluid-solid mass

ratio would also be interesting to investigate by carrying the same kind of experiments in water.
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École Polytechnique for their encouragements about this work.
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