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a b s t r a c t

In the context of energy harvesting we address the coupling between a flexible flag and its
flagpole equipped so that it constitutes a spring-mass oscillator. An extensive set of ex-
periments is carried out in wind tunnel for various flag and oscillator parameters. Results
are analyzed in terms of frequency and amplitude of rotation of the flagpole. We report
numerous configurations of coupling by frequency lock-in leading to resonance condi-
tions. In the case of strong coupling, high amplitudes of rotation of the flagpole are re-
ported, up to 75° peak-to-peak, over a large range of wind velocities. We also propose to
characterize the strength of the coupling with a dimensionless rigidity B̃, which can be
considered as the ratio of the flag bending rigidity to the stiffness of the oscillator.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Harvesting energy from flapping flags is an idea that has been intensively considered during the last decade. Two mechanisms
are generally proposed for the excitation of the flag: either an external forcing by an unsteady flow, such as the wake of a bluff body
(Allen and Smits, 2001; Taylor et al., 2001), or an intrinsic forcing by a steady flow destabilizing the flag by flutter (Tang et al., 2009).
Two technical strategies for harvesting electric energy have also been described in previous works, either distributed or localised.
On the one hand, the deformation of the flag can be used, for instance by covering the flag surface with piezoelectric patches, as in
the recent experimental and numerical studies by Doaré and Michelin (2011), Dunnmon et al. (2011), Giacomello and Porfiri (2011),
Singh et al. (2012), Akcabay and Young (2012), Michelin and Doaré (2013), and Xia et al. (2015). On the other hand, the dis-
placement of the flag can be used, then taking advantage of electromagnetic induction or triboelectricity as in the recent ex-
perimental and numerical studies by Gibbs et al. (2012), Stone et al. (2013), Howell and Lucey (2014), and Bae et al. (2014).

A key point is that energy transfers are favoured in the situation of resonance. More precisely, it has been shown nu-
merically that there is a strong increase in the efficiency of the harvesting in the presence of a frequency lock-in, in the
context of the coupling between a piezoelectric flag and an electrical oscillator (resistance-inductance) studied by Xia et al.
(2015). Moreover, in the context of vortex-induced vibrations, the frequency lock-in between the wake vortices and a cy-
linder-oscillator is essential (Khalak and Williamson, 1999; Williamson and Govardhan, 2004) and is already concretely used
for harvesting energy fromwater currents (see Bernitsas et al., 2008). By comparison with systems based on flapping flags, a
wake of vortex can be seen as the analogue of a flag. Both exert a periodic forcing on the oscillator, which can be significantly
enhanced by the oscillator motion in the lock-in region.

In this paper, we focus on the intrinsic flutter instability of flags and we trigger frequency lock-in conditions between
flapping flags and oscillating flagpoles, while varying the parameters of the flag and oscillator. Results are analyzed in terms
of frequency and amplitude of rotation of the flagpole.
edu (E. Virot).
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2. Experiments

2.1. Experimental set-up

An Eiffel-type wind tunnel is used with wind velocities ranging from 3 to 20 m s�1 at a low turbulence level (0.4% over
this velocity range). The wind tunnel has a rectangular test-section: width � height¼260 mm�240 mm. The flag is
clamped inside of a flagpole of thickness 4 mm and height 140 mm. In our experiments, the Reynolds number based on the
flag length (L) falls in the range = × − ×Re 1 10 4 10L

4 5.
The flagpole is not clamped in the wind tunnel. Rather, it is guided by two ball bearings, Fig. 1, making it free to rotate. An

inertia bar and a set of linear springs are attached to the flagpole to modelize an elementary spring-mass oscillator.
The instantaneous amplitude of rotation of the flagpole is characterized by the rotation angle θ( )t between the inertia bar

and the normal to the wind, Fig. 1(a). Since the flag is clamped to a rigid flagpole, the angle θ( )t is also the rotation angle of
the leading edge of the flag. It is measured with a laser sensor recording 1024 acquisitions per second with an error lower
than 1% in the range of angle from �60° to 60°. In this paper, the fluctuations of θ( )t are reported with the standard
deviation σ θ θ= 〈 〉 − 〈 〉θ

2 2 . The acquisition duration is 24 s, which is sufficient to record more that 100 flapping periods.
Concerning the frequency analysis, noise is reduced by treating independently blocks of 8 s (with an overlap: 50%); the
resulting frequency resolution is then 1/8 Hz.

2.2. Characteristics of the flag and spring-mass oscillator

The flapping frequency of flags must be sufficiently low to be coupled with the (low frequency) spring-mass oscillators,
whose natural frequency can be varied between 1 Hz and 20 Hz. We used paper sheets (120 g m�2, thickness d¼153 μm)
and steel sheets (thickness d¼54, 77 or 103 μm). The mass densities of these sheets are respectively ρ = 790s , 7290, 7620
and 7680 kg m�3. The width of the flags is unchanged (H¼100 mm), while the flag length is varied in the range L¼60–
300 mm. The size of the flags is chosen to limit blockage effect in the wind tunnel.

We have used two inertia bars, depending on the natural frequency needed: a thick aluminium bar and a thin carbon
fiber bar. The moment of inertia Josc of the systemwith the aluminium bar is 1.7�10�4 kg m2, whereas it is 9.2�10�5 kg m2

with the carbon fiber bar. In practice, the carbon fiber bar is quite unique to be both rigid and light (Ashby, 2000). Indeed, we
pay a particular attention to the fact that a flexible inertia bar could interact with the flag. Here the bending rigidity of the
bar is always 100 times larger than the stiffness of springs. If the natural frequency of the oscillator needs to be precisely
adjusted, then additional masses may be placed along the inertia bar, allowing a variation of the inertia moment Josc be-
tween 9.2�10�5 kg m2 and 8.4�10�4 kg m2.

We used linear spring with stiffness in the range 0.05–0.28 N mm�1, leading to stiffness in rotation varying in the range
= – −C 0.28 2.3 N m radosc

1. For keeping the symmetry of the system, a particular attention is devoted to place identical springs
in parallel, at the same distance from the axis of rotation.

The mechanical oscillator attached to the flagpole is irremediably damped. After a small perturbation of the system
without flag, the exponential decrease of the rotation angle that we observed suggests that the damping is essentially
viscous (Landau and Lifshitz, 1976, p. 75). The damping is therefore expressed by a dimensionless damping ratio ζ⁎

osc (Landau
Fig. 1. Experimental set-up. (a) Schematic representation of the experiment. The flagpole is attached to a spring-mass oscillator, which is out of wind-
tunnel. A laser sensor measures the angle of rotation θ of the rotating inertia bar fixed to the flagpole. (b,c) Photographs of the experimental set-up (here
the whole system is out of wind-tunnel), where it can be seen that the flagpole is guided by ball bearings.
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and Lifshitz, 1976), which is measured by adjusting a law θ ω ζ− ( ) ∼ ⁎ tlog / osc osc on the envelope of the temporal decrease of an
impulse response. In this expression, the natural pulsation is defined classically: ω π= =C J f/ 2osc osc osc osc.

Five independent free decay tests have been systematically carried out for each set of parameters of the oscillator. Results
have shown that the damping ratio is constant ζ ≃⁎ 0.014osc in our experiments, except for the system of Section 2.3 where
ζ ≃⁎ 0.005osc .

2.3. A concrete example of frequency lock-in with a paper flag

Let us illustrate the “frequency lock-in” between a flag and an oscillator with a first concrete example. Tests have been
done with a paper flag (120 g m�2) of length L¼286 mm and width H¼100 mm.

In a clamped flagpole configuration, the flapping frequency evolution is shown in Fig. 2(a) as a function of the wind
velocity, where we report the power spectral densities of the flapping moment measured in Virot et al. (2013). The wind
velocity is kept constant about three minutes before the following increase. A dark color means a dominant frequency. The
flapping frequency of the flag with a clamped flagpole increases almost linearly (from 10 Hz to 20 Hz) with the wind
velocity.

In a coupled flagpole situation, with a flagpole-oscillator of natural frequency ≃f 13.9 Hzosc we then expect a resonance
for a wind velocity U¼8.6 m s�1. Measurements of θ( )t have been done for wind velocity U in the range 5.0–11.0 m s�1, with
increments of 0.3 m s�1. The striking effect of the coupling is reported in Fig. 2(b), where we observe the power spectral
densities of θ( )t . Between U¼6 m s�1 and U¼8 m s�1, the oscillation frequency of the flagpole is almost identical to the
flapping frequency of the same flag with a clamped flagpole, Fig. 2(a). Nevertheless, in the range of wind velocity U¼8–
9 m s�1, the oscillation frequency of the flagpole deviates and remains locked with the natural frequency of the oscillator
( =f 13.9 Hzosc ). Above U¼9 m s�1, we observe a strong modification of the dominant frequency, which switches to the
typical flapping frequency of a clamped flag. This evolution bear some resemblances with the one recently observed for
forced vibrations of flags in soap films (Jia et al., 2015). In Fig. 2, it seems that the critical wind velocity of flutter is lower in
the case of the coupled flagpole. A more rigorous estimation of this effect would require further investigations.

The evolution of the standard deviation of the angle of rotation of the flagpole is shown in Fig. 3(a) as a function of the
wind velocity. The measurements obtained with an increasing wind velocity are superimposed with the ones obtained with
a decreasing wind velocity. One can observe a bent-over resonance curve for which the maximum peak-to-peak angle of
rotation is close to 10°. However, if we draw the resonance curve as a function of the flapping frequency, Fig. 3(b), we obtain
a classical linear resonance curve. It suggests that both the bent-over and hysteretic behaviour can be explained by the
frequency lock-in, without any other retroaction of the oscillator on the dynamics of the flag. One can call this first con-
figuration a “light coupling”.

2.4. A concrete example of reproducibility with a steel flag

We choose for this second concrete example a more rigid flag and a less stiff spring-mass oscillator (by adding springs in
series). The flag is made of steel, with a thickness d¼54 μm, a length L¼150 mm and a width H¼100 mm. The spring-mass
oscillator has a natural frequency =f 8.2 Hzosc (with = −C 0.28 N m radosc

1, = × −J 1.0 10 kg mosc
4 2 and ζ =⁎ 0.014osc ). In order to
Fig. 2. Detection of the frequency lock-in by using power spectral densities reported vertically with a logarithmic colorbar (case of a paper flag). (a) Power
spectral densities of the flapping moment of a flag with clamped flagpole (our reference case). We observe a dominant frequency, which increases linearly
with wind velocity U. (b) Power spectral densities of θ( )t , in the case of a coupling flag-oscillator. The natural frequency of the oscillator ≃f 13.9 Hzosc is
visible in spectra. More particularly, an area of frequency lock-in is visible between U¼8 m s�1 and U¼9 m s�1, where the flagpole oscillations are more
intense (darker) and are even “locked” with the natural frequency fosc. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)



Fig. 3. Evolution of the fluctuations of θ( )t , characterized by the standard deviation σθ (case of a paper flag). For each datapoint at a precise wind velocity,
we wait about three minutes before recording, in order to not be affected by any transient signal. (a) We can think of a bent-over resonance curve when it is
plotted as a function of the wind velocity. (b) Nevertheless, we observe a classical resonance curve as a function of the flapping frequency of the flag. The
dotted lines are guides for the eyes.

Fig. 4. Analysis of reproducibility (case of a steel flag). Values obtained by gradually increasing the wind velocity are superimposed with values obtained by
gradually decreasing the wind velocity (blue color) and “test 1”, “test 2”, “test 3” denote the independent reproducibility tests made under the same
experimental conditions. (a) Evolution of the standard deviation σθ of the angle of rotation of the flagpole as a function of the reduced wind velocity.
(b) Dominant frequency of the flagpole oscillation. The natural frequency of the oscillator is indicated by the dotted horizontal line ( =f 8.2 Hzosc ). The
expected trend of the flapping frequency without lock-in is suggested by the gray dotted line, supported by experimental data measured at decreasing
wind velocity (crosses). (c) Evolution of the amplitude peak-to-peak of the trailing edge of the flag in the coupled configuration (circles) and clamped
(crosses), normalized by the flag length L. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this
paper.)
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assess the reproducibility of the “frequency lock-in”, we perform three tests in the same conditions (same flag properties,
same oscillator). Results are reported under a normalized form, introducing a reduced velocity, U f L/ osc , a relative frequency,
f f/ osc, and a relative amplitude of the flag dynamics, 2A/L, where 2A is the peak-to-peak amplitude of the trailing edge of the
flag.

In Fig. 4(a), we report the successive measurements of the standard deviation σθ of the angle of flagpole rotation. The
measurements obtained with an increasing wind velocity are superimposed with the ones obtained with a decreasing wind
velocity in order to highlight the hysteresis phenomenon. We report the corresponding dominant frequencies in Fig. 4(b).
We observe that the frequency lock-in phenomenon takes place over a large range of wind velocities U¼5.1–7.2 m s�1

( = −U f L/ 0.09 0.13osc ).
An identical value of the maximum of σθ is systematically found (≃ °11.2 with an error 4%). The extension of the frequency

lock-in (in terms of wind velocities) is conserved as well. However, the critical wind velocity required to flutter is variable
(difference: 10%). The measurements in Fig. 4(b) also suggest that the coupled configuration is more unstable to flutter than
the clamped one, and from Fig. 4(c) it seems that the flag dynamics can be amplified during the frequency lock-in.
Nevertheless, more detailed studies about these specific points would be necessary to confirms the trends.

Finally, whenwe compare the first example (flag made of paper, =f 13.9 Hzosc ) to the second example (flag made of steel,
=f 8.2 Hzosc ), we clearly see that the maximal angle of rotation strongly vary (here from σ = °θ 3.8max to 11.2° in terms of

standard deviations) when the parameters of the flag and oscillator are modified. In the following, we thus study quanti-
tatively the influence of each parameter of the coupling.



Fig. 5. Amplitude and frequency of the rotation of the flagpole for several parameters of coupling. The natural frequency of the oscillator is adjusted to be
very slightly above the flapping frequency of the flag at the threshold of flutter instability. Values obtained by gradually increasing the wind velocity are
superimposed with values obtained by gradually decreasing the wind velocity. (a,b) With variations of Cosc and Josc (in the same proportions). (c,d) With
variations of Josc and L. (e,f) With variations of Cosc and L. (g,h) With variations of d and L.
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3. Frequency lock-in at the threshold of instability

We perform experiments at the threshold of flutter instability in order to characterize the role of the stiffness and inertia
of the oscillator along with the flag parameters. We adjust the natural frequency of the flagpole-oscillator around the critical
flutter frequency of the clamped flag (at the lowest wind velocity where flutter instability can be observed). Note that this is
an arbitrary choice, and that the natural frequency of the flagpole-oscillator could also be set at much larger values than the
critical flutter frequency of the clamped flag, but with a risk of loss of periodicity at high wind velocities.

3.1. Results

We start by making a series of experiments, increasing equally Cosc and Josc for a fixed value of the frequency fosc close to
8.4 Hz (Fig. 5(a,b)). For each configuration, frequency lock-in is set close to the threshold of flutter instability of the flag. The
threshold of flutter is estimated in the situation of a clamped flag during preliminary experiments, and we denote by fc

clamped

the flapping frequency of the flag at the lowest wind velocity allowing to sustain the flutter instability (since flutter is
subcritical, this value is obtained by decreasing the wind velocity). The parameters of the flags and oscillators are reported in
Table 1. In Fig. 5(a), we report the values of the standard deviation σθ as a function of the reduced wind velocity. We observe
that the larger the spring stiffness Cosc and the moment of inertia Josc, the weaker the amplitude of the oscillations of the
flagpole. In Fig. 5(b), we report the relative frequency of oscillation of the flagpole as a function of the reduced wind velocity.
It confirms a reduction of the frequency lock-in extension when the stiffness Cosc and the moment of inertia Josc are increased
while keeping fosc constant.

We now vary the moment of inertia of the oscillator Josc (while keeping Cosc constant), and the flag length is adjusted in
order to remain at the threshold of flutter instability (i.e. ≃f fosc c

clamped). The corresponding parameters are reported in
Table 1. In Fig. 5(c), we report σθ as a function of the reduced wind velocity. During each experiment, we observe a regular
increase of σθ up to a maximum, followed first by a slow decrease and then by a very sharp decrease. In Fig. 5(d), we report
the dominant frequency of oscillation of the flagpole and we note that the maximum σθ is obtained when the frequency of
oscillation of the flagpole is close to the natural frequency of the oscillator. We also observe that the frequency of oscillation
of the flagpole converges towards fosc by lower values, and then displays a jump, which marks the end of the frequency lock-
in. Concerning the amplitude of rotation, one can notice that increasing the moment of inertia Josc induces a weaker re-
sponse of the system. At the same time, the extension of the frequency lock-in does not vary significantly. It is then hard to
conclude here on the direct impact of Josc on the strength of the coupling. Indeed, in Fig. 5(c,d), an increase of Josc is
associated with an increase of the length of the flag and a decrease of the critical flutter velocity.

We now do the same type of experiment by varying the stiffness of the springs and the length of the flag, while all other
Table 1
Characteristics of the set-ups analysed in Fig. 5. In all these experiments, the flag width is fixed H¼100 mm, the material of the flag is steel, and the

damping ratio ζ = ×⁎ −1.4 10osc
2 is conserved (relative standard deviation ∼10% over more than 30 measurements). In this table, Cosc and Josc are respectively

the stiffness and the moment of inertia of the oscillator, fosc is the natural frequency of the oscillator, ( − )f f f/osc c
clamped

c
clamped characterized the proximity

between the threshold of flutter instability and the frequency lock-in (this parameter has been chosen close to zero in order to trigger the frequency lock-in
at low wind velocities), L is the length of the flag, d is the thickness of the flag, E is the modulus of elasticity of the flag (measured with vibrations of a

cantilever beam), ρs is the mass density of the flag and σθ
max is the maximal standard deviation of the angle of rotation of the oscillator attached to the

flagpole (multiplication of this value by 2 2 indicates approximately the peak-to-peak amplitude). For comparison purposes, we also indicate the value of
the mass parameter Mn of the flags as defined by Eloy et al. (2007).

Set-up Cosc (N m rad�1) Josc(kg m2) fosc (Hz) −f f

f
osc c

clamped

c
clamped

L (mm) d (μm) E (N m�2) ρs (kg m�3) Mn
B̃ (�10�3) σθ

max (°))

1 0.28 1.0�10�4 8.4 2% 150 54 1.1�1011 7290 0.46 3.4 11.2
2 0.32 1.1�10�4 8.4 2% 150 54 1.1�1011 7290 0.46 3.0 9.4
3 0.62 2.2�10�4 8.4 2% 150 54 1.1�1011 7290 0.46 1.6 10.7
4 0.81 2.9�10�4 8.4 2% 150 54 1.1�1011 7290 0.46 1.2 7.5
5 2.3 8.4�10�4 8.4 2% 150 54 1.1�1011 7290 0.46 4.2 2.9

6 0.32 3.1�10�4 5.0 2% 190 54 1.1�1011 7290 0.58 2.4 6.6
7 0.32 1.8�10�4 6.4 3% 170 54 1.1�1011 7290 0.52 2.7 10.0
8 0.32 1.1�10�4 8.5 3% 150 54 1.1�1011 7290 0.46 3.0 10.3
9 0.32 9.2�10�5 9.2 2% 141 54 1.1�1011 7290 0.43 3.2 10.9

10 0.28 2.2�10�4 5.9 3% 181 54 1.1�1011 7290 0.55 2.8 10.5
11 0.32 2.2�10�4 6.6 3% 170 54 1.1�1011 7290 0.52 2.7 10.0
12 0.62 2.2�10�4 7.7 3% 153 54 1.1�1011 7290 0.47 1.5 11.3
13 0.81 2.2�10�4 9.3 2% 144 54 1.1�1011 7290 0.43 1.2 6.7

14 0.28 1.0�10�4 8.2 4% 154 54 1.1�1011 7290 0.47 3.3 9.8
15 0.28 1.0�10�4 8.2 5% 205 77 1.3�1011 7260 0.44 8.6 18.8
16 0.28 1.0�10�4 8.2 3% 225 103 1.5�1011 7680 0.34 22 27.0



Fig. 6. Coupling between a flag and a spring-mass oscillator as function of the dimensionless rigidity ˜ =B EI C L/ osc (within two orders of magnitude). The
horizontal error bar are the cumulative errors on the estimation of the parameter B̃. (a) Evolution of the maximum standard deviation of the angle of
rotation of the flagpole. (b) Evolution of the extension of the frequency lock-in as a function of the dimensionless rigidity B̃.
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parameters are conserved, including the proximity with the threshold of instability. The corresponding parameters are
reported in Table 1. In Fig. 5(e), we observe that the larger the stiffness of the springs, the weaker the oscillations of the
spring-mass oscillator. At the same time, we observe in Fig. 5(f) that the extension of the frequency lock-in is not impacted a
lot in this range of parameters.

Finally, we change drastically the bending rigidity of the flag =EI EHd /123 , by changing the thickness of the flag d. The
corresponding parameters are reported in Table 1. In Fig. 5(g), we report the values of σθ as a function of the wind velocity,
for three different thicknesses of steel flags. As before, the length of the flag is adjusted in order to keep the frequency lock-
in at the threshold of flutter instability. This leads to a significant modification of the critical flutter velocity as well. The
results clearly show that the thicker the flag, the larger the oscillations of the flagpole. Actually, the increase of amplitude for
the set-up 16 is so important that the limits of the experimental set-up are fully reached; the springs are non-linearly
stretched/compressed and the flag touches the walls of the wind tunnel. Concerning the frequency of oscillation, Fig. 5(h),
we observe that the extension of the frequency lock-in also increases as the thickness of the flag increases.

3.2. Discussion

A natural dimensionless number that compares the excitation of the flag to the spring reaction is the ratio of the bending
rigidity of the flag to the stiffness of the springs ˜ =B EI C L/ osc (because the bending moment of the flag ∼EI L/ enters in
competition with the stiffness Cosc). In Fig. 6(a), we report the previous measurements as a function of this dimensionless
rigidity B̃. We observe an almost linear evolution between σ( )θlog max and ( ˜)Blog . In Fig. 6(b), we report the extension of the
frequency lock-in as a function of the dimensionless rigidity B̃. The extension of the frequency lock-in is estimated with
( − )U U U/2 1 1, where U2 is the wind velocity at which the maximum σθ

max is reached and U1 corresponds to the wind velocity
when σθ crosses a conventional value 0.4°. We observe that the extension is also increasing with the dimensionless rigidity
B̃.

To conclude, we have reported numerous configurations of coupling by varying the wind velocity, the parameters of flags
and the characteristics of the spring-mass oscillators. All the data seemingly depend on a single parameter ˜ =B EI C L/ osc (see
also Virot, 2015, for an alternative model). An interesting parallel can then be made with results obtained in the context of
vortex induced vibrations, where the whole dynamics is generally characterized by the Skop–Griffin parameter, which can
be seen as a dimensionless rigidity multiplied by the damping ratio (Skop and Griffin, 1973; Khalak and Williamson, 1999;
Williamson and Govardhan, 2004). Further investigations would be needed about this parallel, in particular in the context of
energy harvesting for which the damping ratio would be a key parameter. It would also be interesting to highlight the
coupling between the flagpole motion and the dynamics of the flag. Indeed, as for the case of VIV, it seems that the system
can benefit a favorable retroaction of the flagpole on the dynamics of the flag, leading to strong amplitude of oscillation in
the lock-in region. The effect of the fluid-solid mass ratio would also be interesting to investigate by carrying the same kind
of experiments in water.

The work presented in this paper has been supported by the EDX-DGA program. We thank Ali Bozetine and William
Gilbert for very helpful suggestions about the experimental set-up. We acknowledge the DRIP department at École Poly-
technique for their encouragements about this work.
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