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Abstract

This paper presents a method for generating a turbulent velocity field that can be used as an input

for the temporal simulation in wind-excited structure problems. Temporal simulations become

necessary when nonlinear behaviour, in the structure or in aeroelastic forces, must be accounted for.

The main difficulty is then to reproduce correctly the statistical properties of the atmospheric

turbulence, especially the spatial correlation. These properties constitute here the targets that the

generated signal has to satisfy. We propose to use the biorthogonal decomposition technique which

possesses interesting features to reach this objective, notably the space–time symmetry. Moreover,

the convergence in energy is obtained rapidly with few terms of the decomposition, particularly in the

low-frequency range. Thus the method is found suitable for application to large civil engineering

structures, such as bridges. Examples are provided for two different kinds of wind.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the field of wind-excited civil engineering structures, temporal simulations are
increasingly important, due to the large size of the structures as in modern suspended
bridges [1]. Nowadays, the flutter problems are well known and the main difficulty arising
see front matter r 2006 Elsevier Ltd. All rights reserved.
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Fig. 1. Typical configuration.

P. Hémon, F. Santi / J. Wind Eng. Ind. Aerodyn. 95 (2007) 21–2922
in practice for the designers is to protect the structure from the turbulence effects.
Particularly, a bridge under erection is delicate and sensitive to turbulent gusts.
As a consequence, there is a need for more accurate computations which can include the

nonlinear behaviour of the structure, especially when cable vibrations must be taken into
account. The classical techniques for solving the dynamical problem are generally based on
spectral methods in which the nonlinear behaviours are difficult to introduce.
Temporal simulations do not present this default, and allow the direct coupling of the

phenomena. Moreover, one can avoid the quadratic recombination of the eigenmodes
response so that temporal simulations can provide better structural stress estimations.
To illustrate this, consider a bridge deck submitted to a mean wind velocity Ū associated

to longitudinal and vertical turbulent components uðtÞ and wðtÞ, as sketched in Fig. 1. The
resulting lift force acting on the deck is noted FzðtÞ. This is the sum of the turbulent forces
and the galloping force. Using the linear quasi-steady theory, it can be written as

F zðtÞ ¼
1

2
rSŪ

2
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Ū
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þ

qCz

qa
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qCz

qa
_zðtÞ

Ū

�
, (1)

where Cz is the lift coefficient of the deck, S the reference surface, r the air density, a the
angle of attack and _zðtÞ the vertical velocity of the deck motion.
In this expression, the turbulent velocity components appear explicitly as function of

time. To calculate the response a long bridge deck, it is essential to account for the
simultaneity and the size of the turbulent gusts along the bridge span.
Therefore the turbulent velocity components must satisfy the statistical wind properties,

which depend on the local condition of the site. The objective of this paper is to present a
method for generating such velocity field. The technique was shortly described in a recent
paper [2]. First we will present the targets that we have chosen to simulate the signal. The
method of construction is then presented and finally applied to realistic test cases.

2. Wind characteristics

In the civil engineering community, the atmospheric turbulence is described with a small
number of statistical parameters. We will deal in the following with the typical
configuration shown in Fig. 1, i.e. the longitudinal and vertical velocity components,
which apply to an elongated horizontal structure placed on the y-axis. These are (i) the
mean velocity ŪðzÞ, which may be a function of altitude z, (ii) the standard deviations of
the velocity su (longitudinal) and sw (vertical), (iii) the corresponding power spectral
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densities (PSD) Suðf Þ and Swðf Þ versus the frequency f, and (iv) the coherence functions in
the lateral direction gy

uðf Þ and gy
wðf Þ.

The chosen PSD functions are those proposed by von Kármán [1]:

Suðf Þ

s2u
¼

4‘x
u=ŪðzÞ

� �
1þ 70:7 f ‘x

u=ŪðzÞ
� �2� �5=6 ; Swðf Þ
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(2)

where ‘x
u and ‘x

w are the longitudinal scales of u and w, respectively.
The coherence functions are approximated by usual exponential functions

gy
uðf Þ ¼ exp

�Cy
u yi � yj

�� �� f
ŪðzÞ

" #
, (3)

where the decay coefficient is Cy
u. The other velocity component gy

wðf Þ is defined similarly
with Cy

w. The cross-coherence function is expressed by combination of the single
component functions:

gi;j
uwðf Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gi;j

u ðf Þ g
i;j
w ðf Þ

q
, (4)

3. Biorthogonal decomposition (BOD)

3.1. General method

BOD has been introduced by Aubry et al. and the rigorous mathematical formulation can
be found in that paper [3]. The main idea is to carry out a deterministic decomposition of a
space–time signal, i.e. the turbulent velocity field, by assuming its square-integrability only.

The BOD of a given signal Uðx; tÞ function of space x 2 <3 and time t 2 <, with
Uðx; tÞ 2 L2ðX� TÞ, X � <3 and T � <, is formally written as

Uðx; tÞ ¼
X1
k¼1

ak ckðtÞjkðxÞ. (5)

The BOD theorem proves that decomposition Eq. (5) exists, converges in norm and that

a1Xa2X � � �X0; lim
M!1

aM ¼ 0; hjk;jli ¼ ck cl ¼ dk;l . (6)

Aubry et al. have called topos the spatial modes jkðxÞ with jk 2 L2ðXÞ and chronos the
temporal modes ckðtÞ with ck 2 L2ðTÞ. They proved that the topos, associated to the set of
the eigenvalues a2k ¼ lk are the eigenmodes of the spatial correlation operator

Scðx;x0Þ ¼

Z
T

Uðx; tÞUðx0; tÞdt. (7)

Simultaneously, the chronos associated to the same set of eigenvalues lk are the
eigenmodes of the temporal correlation operator

Tcðt; t0Þ ¼

Z
X

Uðx; tÞUðx; t0Þdx. (8)
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What is remarkable is the fact that the eigenvalues a2k are common to topos and chronos:
this was proved by using the symmetry property of the correlation operators [3]. This
means that chronos and topos are intrinsically coupled because they have the same
eigenvalue. However, it is possible to separate the information, spatial and temporal, by
multiplying them by the weight factor

ffiffiffiffiffiffi
ak
p

.
The global energy of the signal is equal the sum of the eigenvalues:

X1
k¼1

a2k ¼ TrðScÞ ¼ TrðTcÞ. (9)

The useful result in practice is the possibility to truncate decomposition Eq. (5) to M

spatio-temporal structures.
It is important to recall here that the BOD is deterministic and does not assume

stationary and Gaussian signal, as the classical proper orthogonal decomposition (POD)
or similar techniques do. Therefore the BOD can be used even with signals where the
record is too short for standard analysis, as it is commonly the case, for instance, in climate
observation [4].
3.2. Application to wind field generation

Turbulent velocity field have already been generated by various techniques. There exist a
number of methods for generating a correlated turbulent velocity field as presented in the
review by Guillin and Crémona, and Di Paola [5,6]. One of them is derived from the
method proposed by Yamazaki and Shinozuka for application in earthquake engineering
[10]. Their approach which is called statistical preconditioning, is based on the modal
decomposition of the spatial covariance matrix and the temporal part of the signal is
generated by using a Fourier decomposition. Another technique was proposed by
Sakamoto and Ghanem [7] where the target is specified by the density functions of the
process and the two point correlation functions. The spatial characteristics are recovered
using a Karhunen–Loève expansion while the time characteristics are obtained through a
polynomial chaos expansion.
Recently, Carassale and Solari [8] similarly used the direct proper orthogonal

decomposition and a Fourier decomposition to generate a turbulent wind velocity field
and to compute the wind loads acting on the eigenmodes of a structure.
These methods can be improved by exploiting the space–time symmetry of the BOD, as

outlined in this paper. The new idea here is to build the velocity field as a BOD, which
leads for the vertical component

wðy; tÞ ¼
XM
m¼1

ffiffiffiffiffiffi
at

m

p
cmðtÞ

ffiffiffiffiffiffi
ay

m

p
jmðyÞ, (10)

where the chronos are associated with the set of eigenvalues ðat
mÞ

2 and the topos with ðay
mÞ

2.
The main point is to find the topos and the chronos separately by solving the two
corresponding eigenvalue problems. The principle is fundamentally different from the
methods mentioned above because the basis functions arising in decomposition Eq. (10),
i.e. the topos and the chronos, are not chosen a priori but constructed in order to fit with
the target properties.
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The method of signal generation with BOD requires three main steps: (i) assembly of the
two correlation matrices, spatial and temporal, (ii) resolution of the two related
eigenvalues problems, and (iii) generation of the velocity field using Eq. (10). It is also
recommended a further step which consists in verification of the wind field properties by
comparison with the targets.

The way the correlation matrices are assembled, which is given hereafter, can be subject
to modifications and improvements. Hence we describe the technique we currently use, but
any other techniques are possible at this stage.

The spatial correlation matrix is built starting from the PSD and coherence functions
between nodes i and j as

Scw
i;j ¼

X
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Swi
ðf lÞ Swj

ðf lÞ

q
gy

wðf lÞ; (11)

where l refers to the frequency. The expressions are derived for the vertical velocity
component, the longitudinal velocity component uðy; tÞ being built using the same
procedure.

For a 2D simulation, including both uðy; tÞ and wðy; tÞ, the correlation matrix can be
derived as in Eq. (11) but with the help of cross-coherence function, leading to

Scuw
i;j ¼

X
l
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In this case the 2D correlation matrix is written as

Sc ¼

Scu
i;j

h i
sym:

Scuw
i;j

h i
Scw

i;j

h i
0
B@

1
CA, (13)

and we see then that the size of the eigenvalue problem is multiplied by 4.
The temporal correlation matrix is given by

Tcw
k;n ¼

X
i

wiðtkÞ wiðtnÞ, (14)

where we assume that the individual signals at point i and time tk are built with Fourier
series as

wiðtkÞ ¼
X

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Swi
ðf lÞ

q
cosð2pf l tk þ fi;lÞ. (15)

The phase angles fi;l are randomly uniformly distributed in ½0; 2p�. Note that the present
choice for the temporal correlation matrix is arbitrary and might be improved, but this
does not influence the overall method presented here.

In case of a 2D simulation, the cross-correlation needs to be taken, leading to a matrix of
the form

Tc ¼

Tcu
k;n

h i
sym:

Tcuw
k;n

h i
Tcw

k;n

h i
0
B@

1
CA. (16)
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Table 1

Parameter-simulated winds

Component Sea wind, case A Mountain wind, case B

s=Ū ‘y (m) Cy s=Ū ‘y (m) Cy

u 0.09 85 11 0.16 90 12

w 0.05 35 12 0.12 30 9
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From the relations given above, it must be noticed then that the number of time steps and
the number of nodes on the structure should be equal, which might be a constraint in
practice.

4. Test cases

4.1. Presentation

The illustration of the above method is performed on two kinds of atmospheric wind.
Case A is a sea wind and corresponds to the Saint-Nazaire bridge in France, at an altitude
of 65m above sea level (Ū ¼ 40:9m=s). Case B is a mountain wind, corresponding to the
Millau bridge at 270m altitude (Ū ¼ 36:5m=s). Parameters are given in Table 1.
Note that we deal here with a horizontal bridge deck, where the turbulence level is

constant along its span. Then the turbulence is homogeneous in these test cases, although
the method can be applied to vertical structures for which the incoming turbulence
depends on altitude. As underlined recently by Farge et al. [9], the orthogonal
decompositions based on correlation operators degenerate in Fourier decomposition
when it is applied to homogeneous turbulence. The proposed method based on BOD is
therefore a more general technique which Fourier decomposition is a particular case.

4.2. Results

The following results have been obtained with 256 time steps and nodes, a sampling
frequency of 6Hz and a frequency band of 0.075–3Hz. It is important to recall here that
the time discretization, and subsequently the space discretization, has to be chosen
properly for the problem: especially the Shannon theorem must be respected, and the
signal duration must be sufficient for representing the lowest frequency. In the present test,
the generated signal is 42.6 s long, which represent only 3.2 periods at the lowest frequency
of 0.075Hz.
Note that in the Fourier series (15), the frequency band is discretized following a

logarithmic law, in order to correctly represent the lowest frequencies. The deck span-wise
length is 350m.
The BOD is restricted to a number M of spatio-temporal structures. It is therefore

important to check the convergence of the method and this can be done with the energy
defined in Eq. (9). But the critical point is the fact that the signal is generated with the help
of topos and chronos that are computed separately, as in decomposition Eq. (10). This
assumes that the convergence of the topos and the chronos is obtained simultaneously.
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Fig. 2. Convergence, u (left) and w (right) components, case A.
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Fig. 3. Samples of velocities, u (left) and w (right) components, case A.
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Fig. 2 presents the cumulated energy of case A for the two velocity components u and w.
About 90% of energy is reproduced in the signal with the 40 first terms of the BOD and
95% with 80 terms. Moreover, topos and chronos converge at the same rate, a small
difference appearing at higher orders.

Samples of velocities are given in Fig. 3 versus time. The calculated standard deviations
are a little lower than the target one, due to the truncation to 80 terms, which produces an
energy deficit of 2.5%.

Comparison of resulting spectra with the target function, given in Fig. 4, shows the good
agreement. These spectra are directly computed with the Fourier transform of single
temporal signals which the time resolution and length are mentioned previously. The noise
and the lower agreement at low frequency is a direct consequence of this choice (256 points
sampled at 6Hz). However, even with such constraints the simulated signals follow the
target function. When the number of terms M in the BOD is decreased from 80 to 40, see
Fig. 5, the global level of the PSD decreases due to the lower level of the energy simulated.
Moreover, we observe simultaneously that decreasing the number of terms acts as a low-
pass filter (at about 0.7Hz for M ¼ 40).
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Similarly the correlation functions compare well in Fig. 6. Moreover the cross-
correlation between longitudinal and vertical component, usually difficult to match, shows
a good agreement in Fig. 7.

5. Conclusion

Generation of a spatially correlated velocity field can be easily performed by BOD
within an elegant formulation. The method takes advantage of the space–time symmetry of
the BOD which requires only the square integrability of the velocity field. The number of
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spatio-temporal structures taken in the decomposition is the parameter that fixes the RMS
level and the frequency band. The energy criterion is easy to check and it is recommended
to truncate the decomposition when 95% of the energy is recovered.

The spatial correlation of the generated signal is found in good agreement with the
specified targets.

Extension of the technique to other applications is easy, for instance boundary input
conditions for LES calculations.
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